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Abstract

This paper considers the problem of estimating the Direction-of-Arrival
(DOA) of one or more signals using an array of sensors, where some of the
sensors fail to work before the measurement is completed. Methods for
estimating the array output covariance matrix are discussed. In particu-
lar, the Maximum-Likelihood estimate of this covariance matrix and its
asymptotic accuracy are derived and discussed. Different covariance ma-
trix estimates are used for DOA estimation together with the MUSIC al-
gorithm and with a covariance matching technique. In contrast to MUSIC,
the covariance matching technique can utilize information on the estima-
tion accuracy of the array covariance matrix, and it is demonstrated that
this yields a significant performance gain.

1 Introduction

The problem of estimating the Direction-of-Arrival (DOA) of a number of sig-
nals using an array of sensors has been the subject of research for a fairly long
time. The DOA estimation problem typically arises in underwater acoustics,
RADAR and communication applications. A large number of methods have
been proposed for DOA estimation, for instance the Multiple Signal Classifi-
cation (MUSIC), Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT), Method of Direction Estimation (MODE), Signal Sub-
space Fitting (SSF), Noise Subspace Fitting (NSF) and variants thereof, see,
e.g., [1, 2, 3, 4, 5, 6] and the references therein. These methods determine
the DOA by exploiting properties of the second-order statistics of the data,
in particular by estimating the array output covariance matrix matrix and its
eigendecomposition.

This paper considers the problem of estimating the DOA from incomplete
measurements, that is when some of the data are missing. In some applications
such as underwater surveillance, large sensor arrays perform measurements dur-
ing a long time, and in some cases it happens that one or more of the sensors



fail before the measurement is complete. This leads to problems for the conven-
tional methods, since they cannot directly be used when the measurement data
are incomplete. In particular, most of these methods use the sample covariance
matrix as an estimate of the array output covariance matrix, which cannot be
computed in the usual way if some of the data are missing.

The approach taken in this paper is to provide the existing methods, such as
MUSIC etc., with a statistically sound estimate of the array output covariance
matrix, and use this estimate instead of the sample covariance matrix. Fur-
thermore, we investigate the possibility to utilize information on the estimation
accuracy of the array covariance matrix by using the covariance matching tech-
nique proposed in [7]. It is shown that this is indeed possible, and that doing
so gives significant performance gains.

The paper is organized as follows. In Section 2 the conventional sensor array
model and a model for a sensor array with failing sensors are introduced. In
Section 3 we propose and analyze different ways to estimate the array output
covariance matrix. Section 4 treats DOA estimation based on the covariance
matrix estimates derived in Section 3. Section 5 presents some numerical ex-
amples and Section 6 concludes the paper.

2 Problem Formulation

2.1 Conventional Array Model

Consider the output of an array consisting of m sensors receiving a superposition
of d narrow-band plane waves from far-field emitters. The (complex) envelope
of the received waveforms at time ¢ can be modeled as

x(t) = A(0g)s(t) + n(t) € C™! (1)

where the parameter vector 8y = [0} ... 03]7 contains the DOAs of the d
signals, the estimation of which is our main problem, the matrix A(@) =

[a(61) ... a(fa)] contains the array steering vectors a(f), s(t) = [si(t) ... sd(t)]T

is a vector containing the d source signals at time ¢, and n(t) = [n((t) ... np(t)] T
is noise. The steering vector a(f) is the array response for a unit-amplitude
signal impinging from the direction 8. For example, for a Uniform Linear Array
(ULA), that is an array of m equispaced identical sensors placed on a straight
line, we have a(f) = [1 /350 ej%(mfl)Sing]T, where w is the carrier
frequency, ¢ the propagation speed and A the inter-element spacing expressed
in half-wavelength units.

In this paper, the Gaussian signal model is adopted which means that the
signal s(t) is modeled as a temporally white, zero-mean circularly symmetric
Gaussian random variable with a positive definite covariance matrix S, that
is E[s(t1)s*(t2)] = 6(t1 — t2)S and E[s(t1)s” (t2)] = 0 for any #; and t5. A
similar zero-mean complex Gaussian assumption is made about the noise n(t).
In particular, E[n(t;)n*(t2)] = §(t1 — t2)o*I,,, and E[n(t;)n” (t2)] = 0 where
I, denotes the m x m identity matrix and o2 is the noise power. As a remark,
note that an alternative to the Gaussian signal model is the deterministic signal



model in which s(t) is modeled as a sequence of deterministic vectors instead of
random variables. The choice of signal model has been debated in the literature,
and for instance [8, 6] provide some justification as to why the Gaussian signal
model is more appropriate for the sensor array problem.

Let the array output be sampled at the time instants ¢t = 1,... , N, and
assume that the so-obtained array output measurements are stacked into the
array output matrix

X2 [z(l) ... z(N)]ec™N (2)

Many algorithms for inference about the parameter vector @ rely on prop-
erties of the array output covariance matriz R, which is defined through the
relation

R = E[z(t)z*(t)] = ASA* + 0T ¢ C"™<™ (3)

As an estimate of R, it is common to use the sample covariance matriz
1 1
D __ § : * _ * mxXm

2.2 Model for an Array with Failing Sensors

In this section we present a model of a sensor array in which one or more sensors
fail to work after a certain time. Assume that the total number of sensors in the
array is mq, and that data were collected with all m; sensors for t =1,... , NV;.
After ¢ = Ny at least one sensor fails to work so that me working sensors remain.
Using the my sensors, data are collected for t = Ny +1,... , N1+ Ny. Similarly,
for t > Ny + N» at least one more sensor fails to work so that ms working
sensors remain, and so on. Let p — 1 be the number of time instants at which
sensor failure occurred, so that the total measurement time is Ny + ... + N,.
Note that mi > mo > -+ > m,,.

We assume that {m,... ,mp} and {Ny,... , N,} are known. This is justified
by the fact that the failing sensors and the moments when they stop functioning
are typically easy to identify. Without loss of generality, we further assume that
the sensors are numbered so that all my sensors work for ¢t = 1,..., Ny, the
sensors numbered mq —mgo + 1,... ,m1 work for t = Ny +1,... , N1 + No, etc.

Let @1 (t) £ [0 I, ] x(t) € C™ ! be the last my elements of x(t). De-
fine the array data matrix X, for measurement period k analogously with (2)
through

X £ [mk(Nl‘i‘""FNkfl‘i‘l)

N (5)
mk(N1+"'+Nk) E(kaX k

The snapshot matrix X contains all available measurements of &(t) during the
time interval in which exactly mj sensors were functioning.



The partial array output covariance matrix for measurement period k, Ry,
is the my x my lower right corner of the array output covariance matrix R
defined in (3):

Rk £ E[mk(t)a:Z(t)] = [0 Imk]R |:I?nk:| e Mk XM, (6)

Similarly, the sample covariance matrix Ry, based on data from measurement
period k is defined analogously with (4) through the relation

) 1
Ry = 3 XX € O XMk (7)

3 Estimation of the Array Output Covariance Ma-
trix

In this section, two different ways of estimating the array output covariance
matrix for the sensor array problem with failing sensors are considered. The
simplest way to estimate R is to use data from the first measurement period
only, that is when all sensors were working, and hence discard data from mea-
surement periods 2,...,p. In other words, take Ry = N%XlX’{. Owing to
obvious reasons, this is expected to be a poor estimate.

In the following we first present a relatively simple ad-hoc estimate. Next we
derive the Maximum-Likelihood estimate of the covariance matrix and analyze
its asymptotic properties.

3.1 The ad-hoc Estimate

Element 7, of the ad-hoc estimate Ry is an (unstructured) estimate of the
covariance of sensor outputs ¢ and 7 based on data from the measurement
periods where both sensor ¢ and j were working. We can express this as

R == 3 @t)z;() (8)

where (); ; is a set containing the time instants at which both sensor i and j
were working;:

t€Qi; < T<Ni+- 4 Nyinfk k) ©)

where k; and k; are the largest integers such that mj, > 4 and Mg, > 7,
respectively, and [Q; ;| = Ny +--- + Nmin{k;,k;} 18 the number of elements in
Qi,j-

We note in passing that R, is guaranteed to be Hermitian but not neces-
sarily positive definite. Indeed, it is easy to find examples where R, becomes

indefinite, which is an undesired property.



3.2 The Maximum-Likelihood Estimate

Tt is well-known that for the classical sensor array problem the sample covariance
matrix R is equal to the Maximum-Likelihood (ML) estimate of the array
output covariance matrix. In this section we consider the ML estimation of the
array covariance matrix R for the problem with failing sensors.

Following [9], it turns out that a fruitful approach for the derivation of the
MLE of R is to introduce a parameterization of R in terms of the Cholesky
factorization of its inverse. Let the lower triangular my X m; matrix

1 0 R (|
1 0
HA 1 10
= (10)
B, Lo
B, -1 1
- h2 1_

and the m; x m; diagonal matrix with real-valued strictly positive diagonal
elements

dm, 0 0
0 dp_1 0
D= 0 (11)
: . .0
0 e 0 dy

constitute the Cholesky factors of R™!, so that HDH* = R~!. This factor-
ization is a one-to-one mapping between the set of positive definite matrices R
and the set of Cholesky factors H and D [10].

The derivation of the ML estimate relies on the following simple but impor-
tant observation (see also [9]).

Lemma 1. Assume that R~ = HDH?* is the Cholesky factorization of R™*.
Then

RIZIZH,CD;CH}‘; for k=1,...,p (12)

where Hy, = [0 Imk] H is the my X my, lower right corner of H, and

[ 0
I,,
Dy, is defined analogously; by convention Hy = H and R; = R.

Proof. See Appendix A. O

It follows from the assumptions made in Section 2.2 that the negative log-
likelihood function for the observed data can be written as, to within an additive



constant,

P Ni+-+N,,
- Z(Nk log | Ry| + > m;;(t)R,;lmk(t))
k=1 t=1+Ni++Nj_1 (13)

I
Mﬁ I

Ni(log | Ryl + T { B Ry })

=
Il

1

where | - | denotes the determinant and Tr{-} denotes the trace. Using Lemma
1 and the fact that log |Ry| = —2log |Hy| - 7™ logd; where |[Hy| = 1, yields

P Tk
ZZZNk<Tr{DkH]tRka} —Zlogdj> (14)
k=1 Jj=1

For the sake of notational convenience, let

a |1 ]
g; = (15)
! [hj
which permits us to write
my
N, Tr {DkH;Rka} =Y d;g'Thj9; (16)
j=1
where
A R |0 G j
Tpj £ Ne[0 I]Ry |, | €C (17)
J

for _] = 1, e 3 M1 and I‘kymk = NkRk



Now (14) can be rewritten as follows:

p mg

myg
=3 (- N logd; + > digiTjg;)
k=1 j=1 j=1

m1 mi1
=-N; Z logd; + Z djg;‘-I‘l,jgj

ma ma2
—No) logd; + ) digiT2;g; -
p=t =L

myp myp
— Ny Z logd; + Z djg;l-‘jﬂngj
mi

m1
=—-N; Z logd; + Z d]‘g;]:‘l,jgj (18)
j:m2+1 j:ﬂ‘L2+1
ms

— (N1 +N2) Z lOgdj
j=ma+1
ma

+ Y digi(T1j+Ta)g; -
Jj=mz+1

Mp
— (M +---+Np)Zlogdj
j=1

mp
+) dig§(Ti+ -+ Ty )g;
=1

To proceed, let us define

k
Sk,j S ZI‘Z-,]- € (ijj (19)
i=1
Then (18) can be written
P my,
1= > {-(Wi+-+Ny)logd; +dig;Si9;} (20)

k=1j=mp4;+1

where by convention m,; 1 = 0. The minimization of [ w.r.t. d; is now straight-
forward and yields

it G5k9
J Ni+---+ N

for j =my1+1,... ,mg, k=1,...,p. In (21) g, is the minimizer of g} Sy ;g;

(21)

subject to g;‘-u =1 withu £ [1 0o --- O]T, Viz.
S,;l.u
=B 22
9i u*S,;;u (22)



forj=mr1+1,... , mgand k=1,... ,p.
To summarize, we have shown the following.

Theorem 1. The Mazimum-Likelihood estimate of the array output covariance
. L N A .
matriz R is R,y = H ‘D H , where H and D are computed as follows:

1. Compute Ry, for k=1,...,p according to (7).

2. Compute Sy for j =1,... ,my and k = 1,... ,p according to (17) and
(19).
8. Compute g; for j = myy1+1,... ,mg and k =1,... ,p according to (22).

Compute ch according to (21) for j=1,... ,mq.

A

Let D = diag {Jml,... ,CZI}.

6. Construct H similarly to (10) by using (15) (note that the first element
of g; 1s unity by construction).

Remark 1. The ML estimate of the covariance matrix, le, 18 positive semzdef
inite by construction. Furthermore, d > 0 with probability one so that le 18
positive definite with probability one. As noted above, the ad-hoc estimate Rah
can be indefinite, which in particular implies that the ML estimate and the
ad-hoc estimate are not in general equal to another.

We next turn our attention to the properties of R,,;. We have the following
result.

Theorem 2. Let 7, = vec(R,n;) where vec(+) denotes the operation of forming
a vector by stacking the columns of (-) on top of each other. Furthermore,
introduce for notational simplicity the lower triangular matrices H =HD'?
and Hy, = Hle/2 According to Lemma 4 in Appendiz B, there are matrices
J, J € (lexm% such that H can be uniquely parameterized by a parameter
vector 1 € R™ >V gccording to vec(H) = Jn, and vec(H' ) = Jn. Choose J
and J this way, and define

Jp 2 {[0 I,,]® [IO ]}J e i xmi (23)
my,

where @ denotes the Kronecker product (note that by definition J1 = J). Fur-

thermore let Gy = ﬁk ® Iy, . Then the asymptotic (large-sample) covariance
matriz of Py 1S

. s dr __,. dr
E(R) £ E[(r - rml)(r - rml) ] an l(d’l’[) (24)
where
p
I, =Y 2N, Re {J{Gg(rgr;)% GLJ
k=1 (25)
+ JiGK(R] ® Ri)G}J )}



and
dr -

i = (RO R)((H © L)J + (In, ® H)J) (26)

Here (-)¢ denotes complex conjugate and (-)™ denotes transposing within each

consecutive N XN block of (+). In other words if, for instance, A = ( An Ax >
Ag Az
where A;j are N x N,
AL AL
then ATN = ( o2 )
A3 A,
Proof. See Appendix B. O

Remark 2. An estimate of B(R) is later formed by evaluating (24) at R,
instead of at the true R. This estimate will be denoted by X(R,,;).

As an illustration of the above result, consider two uncorrelated signals with
equal powers and DOAs of 0° and 45°, respectively, arriving at a linear array
with 5 equispaced elements. Assume that Ny = 100 samples are collected with
all my = 5 sensors, and that a varying number Ny of samples are collected with
only the last mo = 2 sensors. Consider the estimation of the received power in
sensor 1, 2 and 5, that is the estimation of the elements R, Ry> and R55 of
the array output covariance matrix R. At a first glance it might seem natural
that the estimation accuracy of the elements R ; and Rj > should be the same
and independent of Ny. This is however not the case as Figure 1 demonstrates.
The figure shows the asymptotic (large-sample) variance of the estimation error
of Ry, R22, R55 provided by Theorem 2, together with results obtained by
Monte-Carlo simulation. It can be noted that the estimation accuracy of Rs 5
increases with increasing Ny, which is obvious, but also that the estimation
accuracies of Ry and Ry, are different and increase slightly with increasing
Ns. In other words, data from sensor 4 and 5 improves the estimation of the
received power in sensor 1 and 2. The small deviation between the asymptotic
variance and the empirical variance for sensors 1 and 2 is attributed to the fact
that Theorem 2 provides a large-sample result only.

4 DOA Estimation

A large number of algorithms for DOA estimation have appeared in the lit-
erature: Maximum-Likelihood methods [8, 6], Multiple Signal Classification
(MUSIC) [1, 6], Subspace Fitting Methods [4, 5], Method of Direction Estima-
tion (MODE) [11] and Covariance Matching Techniques (COMET) [7]. In this
paper, the usage of certain modified versions of MUSIC and COMET will be
considered. We also note here that modifying the Stochastic ML method for the
DOA estimation problem with failing sensors appears to be nontrivial, since the
estimation of the DOAs and the signal parameters, that is S, appears difficult
to separate. This implies that one would end up with a nonlinear optimization
problem with d? 4+ d + 1 parameters, which is far from trivial to handle.



4.1 MUSIC

Consider the array output covariance matrix (3). Since S has full rank, it fol-
lows that the m — d smallest eigenvalues of R are equal to 02, and the d largest
eigenvalues are strictly greater than o2. Thus, we can form the eigendecompo-
sition

R=ASA* + o’ = E,AE! + 0°E,E}, (27)

where A is a d X d diagonal matrix containing the d largest eigenvalues of R,
E, € C™*? contains the eigenvectors corresponding to the d largest eigenvalues,
E, € C™*(m=d) contains the eigenvectors corresponding to the eigenvalue o2,
EE, =14, EE,=1,,_4and EXE, =0.

In order to estimate the DOAs, the MUSIC algorithm computes the eigen-
decomposition of the sample covariance matrix R, viz.

R=BAE +BAE (28)
The matrices E s and En are estimates of E; and E,, (note that An is no longer

a scaled identity matrix). The DOAs are estimated as the locations of the d
largest (usually very sharp) peaks of the MUSIC spectrum

po) = — % 9a®) (29)

4.2 COMET

Assume that a random vector has a covariance matrix R(6) that is param-
eterized by a parameter vector @, and consider the problem of estimating 6
given an estimate R of R together with a measure of the estimation error
%, = E[(# — 7)(#* — r)*] where r = vec(R) and # = vec(R), respectively. The
idea of COMET is to determine 6 by minimizing a Weighted Least-Squares
criterion of the form (7 — r(0))*ﬁ)‘;1(f° —1(0)), where 3, is an estimate of 3.

In order to carry out the minimization of this criterion it turns out to be
useful to introduce a real parameterization of R or equivalently of . A key tool
for doing so is provided by Lemma 4 in Appendix B, which shows that there are
invertible matrices Jy € C%° %% and Im, € Cmixmi such that vec(S) = J g€
and r = vec(R) = Jyn,7y, where & € R”*! and 4 € R™ X! are the respective
parameter vectors. We can write using Lemma 4 and some matrix algebra
results from [12],

e =T, vec (A(o)SA(e)* + 021)
;ﬁ ((AC(O) ® A(8)) vec(S) + o? vec(Iml)) (30)
[

(A°(0) ® A(0)) Ty vec(In,)] [52] 2 4(0)c

o
COMET estimates @ as the minimizer of
~ S BN ~ >—1, .
9@ =(F—r)S, F-r)=F-7"2, §-9)
~ o1, .
= -¢0)a)'s, (¥ - ¢(0)a)

10



where 27 = J;ﬁ ZA],.J;;; and 4 = J;ﬁf“. The result needed to proceed is the
following.

Lemma 2. Assume that the asymptotic covariance matriz in Theorem 2 eval-
uated at R, is used as weighting in (31), i.e., ¥y, = B(Ry,;). Then 3 is
real.

Proof. The result follows from the proof of Theorem 2 by noting that I, is real

and g—:” =J mlg—:}’, where the latter matrix is the derivative of a real quantity
w.r.t. a real variable. O

Applying the lemma we find that all quantities in (31) are real. Thus (31)
can be minimized explicitly w.r.t. a, yielding

1 -1

a(0) = (¢*(0)%,'(0))  ¢"(O)F, 5 € R (32)

Plugging this expression into (31) yields, after some simplifications, the real
optimization problem

- ~—1/2

6 = argmin'?TE,y S
(2]

s p) 33
=5 %e0)7 (3
where T = I — X(X7X)~' X7,
Note that the optimization problem (33) is nonlinear and d-dimensional.
Given an initial estimate, obtained by e.g. MUSIC, a Newton-type method can

be used to minimize the criterion function.

4.3 The Cramér-Rao Bound

The Cramér-Rao inequality gives a lower bound on the achievable variance of
any unbiased estimator [13]. Specifically, if ¥ is a set of observations of a random
variable depending on a real parameter vector @ and [(8) = log P(¥|@) denotes
the log-likelihood function of the parameter vector @ given the observations ¥,
it holds that for any unbiased estimator 0

£[(6 - 0,)(6 —0,)7] > (5[ LD 1)

de da—T] ‘9:9())1 £F (34)

where 6 is the true parameter vector and the matrix inequality X > Y means
that the difference X — Y is positive semidefinite. The matrix F' is the Fisher
Information Matriz.

. T .
Let us introduce the total parameter vector [OT er 02] where £ is a
real vector parameterizing S as in Section 4.2. Then the FIM for the DOA
estimation problem has the structure

Fo9 Fg¢ Fog,

F=|Fp Fg Fgpe (35)
Fgo_z Fgﬂ'2 F0-20-2

11



and the CRB for @ can be expressed as

E[(6—860)(6—60)"] >F'|,, (36)

Extracting the “@-corner” from F ! is far from trivial. In [8] a closed-form
expression for the CRB is obtained for the conventional sensor array problem
discussed in Section 2.1 by using results on asymptotic analysis of concentrated
likelihood functions; the same result can be found in [14]. Unfortunately, for
the problem with missing data, concentrating the likelihood function w.r.t. 6
appears difficult, so the techniques in [14, 8] are not directly applicable. Instead,
we evaluate the total FIM F, and extract the relevant elements of F~!.

Since the measurements are independent, the total FIM equals the sum
of the FIMs of the different measurement periods, viz. F = Y7 _, F*. The
evaluation of F* is straightforward. Let

I RTIN &

and define Ay = [0 I, ]A, and Dy =[0 I, ]D. Then it is not difficult to
show that, see, e.g., [15, Section IV]:

Flo=2Re {(SA;R,'A;S) © (DyR,'Dy)" +
+ (SAjR;'Dy) © (SA;R,'Dy)"}

F§e = Ji(AL R, A}) ® (ALR; " Ap)J 4

Fp.p = Te{R, %}

Fi. =Q(D"R,TA°® SA;R,' A} +
+ STATR;"A°® DiR;' Ay)J

F} ., =2Re{diag{SA;R,*D}}

F{.=Jy(AR." ® AjR; ") vec(I )

(38)

where row 7 of Q equals (vec(eieiT))T, e; is the i" row of the d x d identity
matrix, J4 is defined as in Section 4.2, and ® denotes elementwise multiplica-
tion.

5 Numerical Examples

This section presents some performance results obtained by Monte-Carlo sim-
ulation. The following DOA estimation methods were considered.

o MUSIC - ad-hoc covariance matriz, and MUSIC — ML covariance matriz.
MUSIC was applied with the covariance matrix estimates R,; and R,
respectively.

e COMET. The COMET approach was used with the covariance matrix
estimate R, and weighting 3(R,,;), i.e. the weighting considered in
Lemma 2. A few Newton-steps were taken using a scoring technique

12



[7], with MUSIC estimates as initial values. In the case that MUSIC
failed to resolve the sources, a combination of a grid search and a scoring
technique was used. Prior to applying COMET, the weighting matrix was
regularized to ensure a conditioning number < 106,

Figure 2 shows the result of the first experiment. Two sources with DOAs 0°
and 10° were considered, and white noise of different powers was added to the
source signals. A uniform linear array with nominally m; = 12 elements was
used for reception and the sources were independent and of unity power, i.e. § =
I. The number of snapshots were [Nl Ny Nj N4] = [100 100 200 200]
and [ml Mo M3 m4] = [12 11 10 9]. The figure shows the Root-Mean-
Square (RMS) error of the DOA estimate for the signal with DOA 0° versus
the Signal-to-Noise Ratio (SNR) in dB.

In the second experiment, the same model was used but the DOAs were
5% and 6°. This is a much more difficult scenario. Figure 3 shows the results.
The performance for MUSIC - ad-hoc covariance matriz is not shown since this
method failed to resolve the two sources.

Finally, Figure 4 shows the result of a third experiment. The same model as
in Figure 3 was used but the source correlation was varied from 0 (uncorrelated
sources) to close to 1 (coherent sources). The RMS error of MUSIC increases
with increasing source correlation, which is in accordance with the results in
[6]. Note however that for source correlation > 0.9, the RMS error of MUSIC
does not increase any longer. The reason for this is that the MUSIC spectrum
degenerates and exhibits only one peak which is almost always located between
5° and 6°, and the location of this single peak is taken as the DOA estimate
for both sources.

From the experiments the following can be concluded:

e Considering usage of the MUSIC algorithm, there can be a significant per-
formance gain when using the ML estimate R,,,; of the covariance matrix
instead of the ad-hoc estimate Rgp,. Specifically, for the case with DOA
separation 10° there is no significant difference whereas for the more diffi-
cult scenario with DOA separation 1°, MUSIC using Ry, fails completely
to resolve the sources.

e The performance of the COMET algorithm is significantly better than
that of MUSIC. The reason for this is that COMET uses information on
the estimation accuracy of the array covariance matrix.

e The better performance of the COMET based approach is even more
visible when the sources are correlated. This is not surprising since it
is well-known that the performance of MUSIC degrades with increasing
source correlation [6].

6 Conclusions

This paper has discussed the problem of estimating the parameters in a sensor
array model from incomplete data corresponding to the case when one or more

13



of the sensors fail to work before the measurement is complete. Especially the
problem of DOA estimation using an array of sensors was considered. First,
different ways of estimating the array output covariance matrix were consid-
ered. The ML estimate of the covariance matrix and its asymptotic accuracy
were derived and discussed. Next, DOA estimation based on the estimated
covariance matrices was considered. Two algorithms were discussed, the well-
known MUSIC algorithm and a covariance matching technique (COMET). Tt
was demonstrated that COMET, in contrast to MUSIC, can use information
on the accuracy of the covariance matrix estimate, and that this can improve
the performance when estimating the DOAs from incomplete data.

In our study the best performing method for DOA estimation from incom-
plete data was COMET using the maximum-likelihood estimate of the covari-
ance matrix le together with an estimate of the covariance of le as weight-
ing matrix. For a detailed discussion of the performance results, see Section 5.
The proposed COMET approach may therefore be the preferred choice when
treating parameter estimation from incomplete data in the sensor array signal
processing framework.

A. Proof of Lemma 1

By definition

R,=[0 I,,] R[ 0 ] =[0 I,|]H*D'H™! [ 0 ] (39)
Imk Imk'
But H has the structure
X 0
H = 9 Hk:| (40)

where X denotes a block of no interest for our analysis. Then

1] = ) o 0] = L] (a1)

Using this observation twice in (39) yields

0 . 0
I : 0
Re=[0 H"| o - Q| [ HY (42)
' 0
| 0 0 di'

which completes the proof.

14



B. Proof of Theorem 2

We first present two useful lemmas. The first lemma quantifies the estimation
error when using the sample covariance matrix as an estimate of a covariance
matrix.

Lemma 3. Let y(1),... ,y(N) be independent, zero-mean circularly symmet-
ric complez Gaussian random vectors with covariance matriz R 2 Ely(t)y*(t)].
Let R= 5" y(t)y*(t), r = vec(R) and # = vec(R). Then

1. E[r#*] =rr* + +£(RT ® R)
2. Blie"] = rrT + & (rrT)Tw

Proof. For a proof of 1), see [7]. To show 2), let

L
P 2= y(t)yi () (43)
N
=1

be the i column of R, and similarly r; the i column of R. This yields

El#i#]] = NZZZE yi 1)y (s)] (44)

t=1 s=1

Using the results in [13] for the fourth-order moments of complex Gaussian
variables, and the symmetry properties of y(¢), the element k,m of E[i'ﬁ'f]
can be written, where ¢ # s

Bl Tl|, = Bl 0y (05 ()

N2 - N

+ TE[yk(t)ym(S)yZ‘(t)y}f(s)]

= < (Bl 1Bl (115 ()]
[ (O (O] lym (£)y5 (1]
[yk(tw (1Bl (B)y (1))

(Bl ®ym()1Bly; ()5 ()] (45)
B )5 (D) ym ()5 ()]
+E[yk(ny;f(s)w[ym(s)y;-*(t)])

1
=N (Rk,iRm,j + Rk,ij,i>

N? - N
N2

1
=Ry il + R Bomsi

+F
+EB

N

Rk,iRm,]

Hence, B[t ; MN=rr T + +r;r!l’, which concludes the proof. O
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The second lemma shows that Hermitian matrices and Cholesky factors can
be parameterized by a real-valued parameter vector in a neat way.

Lemma 4. Let Q¢ be the set of all n X n complex matrices with real diago-
nal elements and zeros above the main diagonal, and let Qg be the set of all
Hermitian n X n matrices. There there exist

1. a one-to-one mapping fr : RV X' = Qp such that vec(fr(n)) = Jun,
where n € R X1 s g parameter vector, and Jg € CV'*n* s q constant
matriz. Furthermore, J g is invertible, and the inverse mapping fﬁl has
the form foH(X) = J 5 vec(X).

2. a mapping fo : RV X1 = Q¢ such that vec(fo(n)) = Jen and vec(f&(m)) =
Jem , where m € R <1 g the parameter vector, and Jo,J¢ € v xn?
are constant matrices. The mapping fc is one-to-one, thus invertible, but
in contrast to the case above, the matrices Jo and J¢ are singular.

Proof. The proof of 1) consists of verifying that all Hermitian matrices can
be uniquely parameterized by n + 2@ = n? real parameters. That Jy is
invertible and that the inverse mapping has the claimed form is shown in [7].
The proof of 2) relies on the same observation. That e.g. J¢ is singular is

obvious since it must have at least one row of zeros. O

We now proceed to derive the asymptotic covariance matrix for #,,; =
vec (le) According to general properties of ML estimates, the ML estimate
is consistent and the asymptotic covariance matrix of the estimate equals the
Cramér-Rao bound, which thus is sufficient to compute. We note first that
R™' = HH" and by Lemma 1 R,;l = IEIkINIZ

By a statistical linearization argument [16], the asymptotic covariance ma-
trix can be written in the form (24), where I, E[% d‘j}—lT] is the FIM for n,
which we next compute.

Since IEIk = [0 Imk] H [IO

my,
vec(H},) = Jyn € C X1 where Jj, was defined in (23).

The log-likelihood function for the observed data is, according to (13), I =

% _lk, where

], it follows, using some results of [12], that

A :Nk<log|Rk| +Tr{R,;1Rk}) (46)

The derivative w.r.t. 7; becomes, using some matrix calculus results of [13]

dly,

1 d -
— N ’I‘r{—2I—I )
dn); b ko k

(47)
+ (iI:Ik)I:IZRk + (iﬁZ)Rkﬁk}

i i
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Clearly, din veeH, = J xei, where e; is the i'" column of the identity matrix.
This yields, after some algebraic manipulations,

%:[dl_k : ﬂ]T

= 2N, (—J{ vec(INI,:T) + Re {J{ vec(RkIEIk)C}>

Since E[Rkﬁk] = Rkﬁk = (ﬁkﬁ;‘;)ilﬁk = EI;* , it follows that E[(Zl—,,’;] = 0,
and consequently that E[%] = 0. Together with the fact that the observa-

tions during different measurement periods are independent, this shows that
the Fisher information can be written

dl dl P Tdly. d
I S : —k 49
" [dndn ] P [dn dnT] 49)

. . ey AN . .
To evaluate this expression, note first that JI vec(H) ) is the derivative of

a real quantity w.r.t. a real variable, thus indeed real-valued. Furthermore, it
holds that vec(RyH}) = (fI{@Imk) vec(Ry,) = Gy, and vec(H,, ) = Gjrp.

17



We get

diy di, |
b idn dn” i B
= 4NZE {(J;‘f VGC(EI;T) - Re{J{vec(Rkﬁk)c}) X

((vec(I:I,;T))TJ;C —Re {(vec(kaIk))*Jk}ﬂ
- 4N,§{J{ vec(H, ) (vec(H, )T J,

+ E[Re {7} vec(ﬁZfIZ)} Re {(Vec(kaIk))*Jk}}

—Jr vec(I:I,:T)E[Re {(vec(flkI:Ik))*Jk}]
- E[Re {JT vec (RZEIZ)}} (vec(f{,:T))TJk}
= 2N,§{2J{ VeC(ﬁ;T)(VeC(ﬁ];T))TJk

+ Re {E[Jf vec(Ry H}) (vec(RyHy)) " J ]

M ——

+ Re {E[JZ VeC(Rkﬁk)(VeC(Rkﬁk))*Jk]

—2JT vec(H )Re{(vec(ﬁ;*))*Jk}
—2Re {J%vec(ﬁ;T)}(vec(ff,:T))TJk}

:2N,§{ —2J{V€C(ﬁ;T)(VeC(ﬁk )" Ik,

+Re {E [TT G ri G + Ti G G ] }}

where we used the fact that Re{X}Re{Y} = LRe{XY + XY*°}. Using
Lemma 3, this gives (25) after some simpliﬁcations

We now turn to compute the derivative Us1ng that R = (ﬁff*)*l, and
results for the derivative of a matrix 1nverse 1t is found that

j—; = vec (dR> = —vec (R(dinZ

d S
=—(R"® R)% vec(HH )

ﬁﬂ*)R)

., d -
- (R"®R)((H ® Im) 5o vec(H)

- d ~
+ (I, ® H)d_nz vec(H ))
But dn vec(H) = Je;, and - vec(H*) = Je;, which gives (26) and con-
cludes the proof.
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Figure 1: Estimation error variance of the received power in the sensors 1, 2
and 5 for a 5-element ULA with my = 5, mo = 2, Ny = 100 and varying Ns,
using the ML estimate of the covariance matrix provided by Theorem 1. Two

uncorrelated source signals of equal power were present, with DOAs equal to
0° and 45°, respectively. The Signal-to-Noise Ratio (SNR) was 0 dB.
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Figure 2: Simulation of DOA estimation with a 12-element array and uncorre-
lated sources. The parameters were 8y = [0° 10°]7, § = I, [Ny No N3 N4| =
[100 100 200 200] and [m; mg mg m4] = [12 11 10 9]. The figure shows the
Root-Mean-Square (RMS) of the DOA estimation error for the signal with DOA
0°.
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Figure 3: Simulation of DOA estimation with a 12-element array and uncorre-

lated sources. The parameters were 8y = [5° 6°]T, § = I, [Ny Ny N3 Ny] =
[100 100 200 200] and [my me m3 my] = [12 11 10 9]. The figure shows the

Root-Mean-Square (RMS) of the DOA estimation error for the signal with DOA
5°.
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Figure 4: Simulation of DOA estimation with a 12-element array and vary-
ing source correlation. The parameters were 6y = [5° 6°]T, SNR= 22.5 dB,
[Ny N2 N3 N4 = [100 100 200 200] and [m1 mg m3 my| = [12 11 10 9]. The
figure shows the Root-Mean-Square (RMS) of the DOA estimation error for the

signal with DOA 5°.
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