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Abstract

We consider discrete infinite-state Markov chains
which contain an eager finite attractor. A finite attrac-
tor is a finite subset of states that is eventually reached
with probability 1 from every other state, and the eager-
ness condition requires that the probability of avoiding
the attractor in n or more steps after leaving it is ex-
ponentially bounded in n. Examples of such Markov
chains are those induced by probabilistic lossy channel
systems and similar systems. We show that the ex-
pected residence time (a generalization of the steady
state distribution) exists for Markov chains with eager
attractors and that it can be effectively approximated to
arbitrary precision. Furthermore, arbitrarily close ap-
proximations of the limiting average expected reward,
with respect to state-based bounded reward functions,
are also computable.

1 Introduction

Overview. Probabilistic models can be used to cap-
ture the behaviors of systems with uncertainty, such
as programs with unreliable channels, randomized al-
gorithms, and fault-tolerant systems. The goal is
to develop algorithms to analyze quantitative aspects
of their behavior such as performance and depend-
ability. In those cases where the underlying seman-
tics of a system is defined as a finite-state Markov
chain, techniques based on extensions of finite-state
model checking can be used to carry out verification
[14, 26, 15, 6, 9, 24]. However, many systems that
arise in computer applications can only be faithfully
modeled as Markov chains which have infinite state
spaces. Examples include probabilistic pushdown au-
tomata (recursive state machines) which are natural

models for probabilistic sequential programs with re-
cursive procedures [17, 18, 20, 19, 16, 21], probabilistic
lossy channel systems (PLCS) which consist of finite-
state processes communicating through unreliable and
unbounded channels in which messages are lost with a
certain probability [1, 5, 7, 8, 10, 22, 25], and probabilis-
tic vector addition systems, the probabilistic extension
of vector addition systems (Petri nets) which models
concurrency and synchronization [2, 3].

Related Work. A method for analyzing the limiting
behavior of certain classes of infinite Markov chains (in-
cluding PLCS) has recently been presented by Brázdil
and Kučera in [11]. The main idea in [11] is to approx-
imate an infinite-state Markov chain by a sequence of
effectively constructible finite-state Markov chains such
that the obtained solutions for the finite-state Markov
chains converge toward the solution for the original
infinite-state Markov chain. The infinite Markov chain
needs to satisfy certain preconditions to ensure this
convergence. In particular, the method requires decid-
ability of the reachability problem (and even of model
checking with certain path formulas) in the underlying
infinite transition system.

We recently [2, 3] defined weak abstract conditions
on infinite-state Markov chains which are sufficient to
make many verification problems computable. Among
those are decision problems (“Is a given set of fi-
nal states reached eventually (or infinitely often) with
probability 1?”), and approximation problems (“Com-
pute the expected cost/reward of all runs until they
reach some final state.”). One such sufficient condition
is the existence of an eager finite attractor. An attrac-
tor is a subset of states that is eventually reached with
probability 1 from every other state. We call an attrac-
tor eager [3] if it satisfies a slightly stronger condition:
after leaving it, the probability of returning to it in n
or more steps is exponentially bounded in n. Every
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finite-state Markov chain trivially has a finite eager at-
tractor (itself), but many infinite-state Markov chains
also have eager finite attractors. A sufficient condition
for having an eager finite attractor is that there exists
a distance measure on states such that for states suf-
ficiently far away from a given finite subset, the prob-
ability that their immediate successor is closer to this
subset is greater than 1

2 [3]. For example, probabilis-
tic lossy channel systems (PLCS) always satisfy this
condition. The condition that an eager finite attrac-
tor exists is generally incomparable to the conditions
in [11], but classic PLCS satisfy both.

Our contribution. We show that infinite-state
Markov chains that contain an eager finite attractor
retain many properties of finite-state Markov chains
which do not hold for general infinite-state Markov
chains. These properties include the facts that

• There is at least one, but at most finitely many,
bottom strongly connected components (BSCC).

• The Markov chain does not contain any persistent
null-states (i.e., for every recurrent state the ex-
pected recurrence time is finite).

• The steady state distribution exists if the Markov
chain is irreducible and the expected residence
time (a generalization of the steady state distri-
bution) always exists.

We use these properties to show that the expected resi-
dence time can be effectively approximated to arbitrary
precision for Markov chains with eager finite attractors.
In a similar way, one can compute arbitrarily close ap-
proximations to the limiting average expected reward
with respect to state-based bounded reward functions.

In contrast to [11], our method is a pure path explo-
ration scheme which computes approximate solutions
for the original infinite-state Markov chain directly. We
do not require decidability of the general reachabil-
ity problem, but only information about the mutual
reachability of states inside some eager finite attractor
(but not necessarily inside every finite attractor). This
weaker condition can be satisfied even if general reach-
ability is undecidable, e.g., if the eager finite attrac-
tor is known to be strongly connected or just a single
point. Thus, our method is applicable not only to clas-
sic PLCS (where every message in transit can be lost at
any moment, and reachability is decidable [4, 12]) but
also to more general and realistic models of unreliable
communication where the pattern of message loss can
depend on complex conditions (burst disturbances; in-
terdependencies of conditions which cause interference)
and where general reachability is undecidable.

Example. Consider a different variant of PLCS where
at every step there is a fixed probability of losing all
messages in all channels (i.e., a total reset), but there
are no individual message losses. It is easy to encode
a Minsky 2-counter machine into this PLCS variant
s.t. the final control-state qacc is reachable from the
initial configuration qinit ε (channels initially empty)
in the PLCS iff it is reachable in the Minsky ma-
chine. (One needs to make sure that a total reset in
any other control-state than qinit leads to configuration
qinit ε again without visiting qacc.) By adding a transi-
tion from qacc back to qinit , one obtains the eager finite
attractor {qinitε}. However, the reachability problem
whether qacc can be reached from qinit is undecidable.

2 Preliminaries

Transition Systems. A transition system is a tuple
T = (S,−→) where S is a countable set of states and
−→⊆ S×S is the transition relation. We write s −→ s′

to denote that (s, s′) ∈−→.
A run ρ is an infinite sequence s0s1 . . . of states

satisfying si −→ si+1 for all i ≥ 0. We use ρ(i) to
denote si and say that ρ is an s-run if ρ(0) = s. We
assume familiarity with the syntax and semantics of
the temporal logic CTL∗ [13]. Given a CTL∗ path-
formula φ, we use (s |= φ) to denote the set of s-runs
that satisfy φ. For instance, if Q ⊆ S, (s |=©Q) and
(s |= 3Q) are the sets of s-runs that visit Q in the next
state resp. eventually reach Q. For a natural number
n, ©=nQ denotes a formula which is satisfied by a run
ρ iff ρ(n) ∈ Q. We use 3

=nQ to denote a formula
which is satisfied by ρ iff ρ reaches Q first in its nth

step, i.e., ρ(n) ∈ Q and ρ(i) 6∈ Q when 0 ≤ i < n.
Similarly, for ∼ ∈ {<,≤,≥, >}, 3

∼nQ holds for a run
ρ if there is an m ∈ N with m ∼ n s.t. 3

=mQ holds.
For all n ≥ 0 and Q1, Q2 ⊆ S, we use Q1 U=n Q2 to

denote a formula satisfied by a run ρ iff for all i : 0 ≤
i < n, ρ(i) ∈ (Q1−Q2), and ρ(n) ∈ Q2. In words, runs
in (Q1 U=n Q2) reach the set Q2 for the first time in
the nth step, only passing through states in Q1.

The properties we consider are defined on (infinite)
runs. Thus, we assume transition systems that are
deadlock-free, i.e., each state has at least one succes-
sor. It is common to add a self-loop to deadlock states
if they occur.

A path π is a finite sequence s0, . . . , sn of states such
that si −→ si+1 for all i : 0 ≤ i < n. We let |π| := n
denote the length (number of transitions) in a path.
Note that a path is a prefix of a run. Given a run ρ,
we use ρn for the path ρ(0)ρ(1) · · · ρ(n). Let Πk

s = {ρ :
|ρ| = k ∧ ρ(0) = s} denote the set of paths starting
in s of length k. For any s, s′ ∈ S and n ∈ N, let
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Πn
s,s′(Q) := {π ∈ Πn

s : (∀i.1 ≤ i ≤ n − 1 =⇒ π(i) 6=
s′∧π(i) 6∈ Q)∧π(n) = s′}. Intuitively, Πn

s,s′(Q) denotes
the subset of Πn

s that visits s′ for the first time in the
nth step without going through Q.

A transition system is said to be effective if (1) it
is finitely branching, and (2) for each state, we can
explicitly compute all its direct (one step) successors.

A transition system where every state is reachable
from all other states is called strongly connected. In the
context of Markov chains (see below) this condition is
called irreducible.

Markov Chains. A Markov chain is a tuple M =
(S, P ) where S is a countable set of states and P :
S × S → [0, 1] is the probability distribution, satisfying
∀s ∈ S.

∑

s′∈S P (s, s′) = 1.
A Markov chain induces a transition system, where

the transition relation consists of pairs of states re-
lated by a positive probability. Formally, the underly-
ing transition system ofM is (S,−→) where s1 −→ s2

iff P (s1, s2) > 0. In this manner, concepts defined for
transition systems can be lifted to Markov chains. For
instance, a run or path in a Markov chain M is a run
or path in the underlying transition system, and M
is effective, etc., if the underlying transition system is
so. Notice that in the context of Markov chains,M is
called irreducible if the underlying transition system is
strongly connected. In particular, irreducibility is an
important property of Markov chains and a key ingre-
dient in our algorithms.

A Markov chain M = (S, P ) and a state s induce
a probability space on the set of runs that start at s.
The probability space (Ω, ∆,P) is defined as follows:
Ω = sSω is the set of all infinite sequences of states
starting from s and ∆ is the σ-algebra generated by the
basic cylindric sets {Du = uSω : u ∈ sS∗}. The prob-
ability measure P is first defined on finite sequences of
states u = s0 . . . sn ∈ sS∗ by P(u) =

∏n−1
i=0 P (si, si+1)

and then extended to cylindric sets by P(Du) = P(u);
it is well-known that this measure is extended in a
unique way to the entire σ-algebra. We use P (s |= φ)
to denote the measure of the set (s |= φ) (which is mea-
surable by [26]). For singleton sets, we sometimes omit
the braces and write s for {s} when the meaning is
clear from context.

We say that a property of runs holds almost certainly
(or for almost all runs) if it holds with probability 1.

Eager Attractors. A set A ⊆ S is said to be an at-
tractor if P(s |= 3A) = 1 for each s ∈ S. In other
words, for all s ∈ S, almost all s-runs will visit A. We
will only work with attractors that are finite; therefore
we assume finiteness (even when not explicitly men-
tioned) for all the attractors in the sequel. We say
that an attractor A ⊆ S is eager if there is a β < 1

such that for each s ∈ A and n ≥ 0 it is the case that
P

(

s |=©
(

3
≥nA

))

≤ βn. In other words, for every
state s ∈ A, the probability of avoiding A in n + 1 (or
more) steps after leaving it is exponentially bounded
in n. We call β the parameter of A. Notice that it is
not a restriction to have β independent of s, since A is
finite. We showed in [3] that every system whose size is
(eventually) more likely to shrink than to grow (by the
same amount) in every step has a finite eager attractor.
In particular, every probabilistic lossy channel system
has a finite eager attractor that can be computed and
for which the parameter can also be computed.

Bottom Strongly Connected Components. Con-
sider the directed acyclic graph (DAG) of maximal
strongly connected components (SCCs) of the transi-
tion system. An SCC is called a bottom SCC (BSCC)
if no other SCC is reachable from it. Observe that
the existence of BSCCs is not guaranteed in an infinite
transition system.

In a Markov chain with a finite attractor A, there
exists at least one BSCC. Moreover, each BSCC must
contain at least one element from the attractor. There-
fore, there are only finitely many BSCCs; denote them
by B1, . . . , Br, where r can be at most the size of A.
If s |= ∃3s′ is decidable for all s, s′ ∈ A, we can com-
pute the sets A1 = B1 ∩ A, . . . , Ar = Br ∩ A (they are
the BSCCs of the finite directed graph (A, E) where
(s, s′) ∈ E ⇐⇒ s |= ∃3s′).

Note that a run that enters a BSCC never leaves it.
Thus, Mi :=

(

Bi, P |(Bi×Bi)

)

(where the second com-
ponent is the restriction of P to Bi ×Bi) is a Markov
chain on its own; call it the Markov chain induced by
Bi. The Markov chain induced by a BSCC Bi is irre-
ducible and has the finite eager attractor Ai := Bi∩A.
Let B′ = B1∪· · ·∪Br and similarly A′ = A1∪· · ·∪Ar .

The following Lemma from [5, 10] implies that al-
most all runs reach a BSCC.

Lemma 2.1 For any Markov chain with a finite at-
tractor A and for any initial state sinit ,

(i) P(sinit |= 3A′) = 1;

(ii) for each BSCC Bi, P(sinit |= 3Ai) = P(sinit |=
3Bi).

Cesàro Limits. The Cesàro limit of a se-
quence a0, a1, . . . is defined as climn→∞ an :=
limn→∞

1
n+1

∑n
i=0 ai. It is well known that if

limn→∞ an exists, then the Cesàro limit exists and
equals the limit. Cesàro limits are therefore a natu-
ral generalization of the usual limit that can be used
when the limit does not exist. For instance, although
the sequence {1, 0, 1, 0, . . .} does not have a limit in the
usual sense, it has the Cesàro limit 1

2 .

3



3 Problem Statements

In this section, we give the mathematical definitions
of the problems we want to solve, as well as the asso-
ciated computational problems.

The Steady State Distribution. The steady state
distribution1 of a Markov chain is a probability distri-
bution over states. For a state s ∈ S, the steady state
distribution of s, denoted by πs, expresses “the average
probability to be in s in the long run”. Formally, it is
the solution to the following equation system, if it has
a unique solution.















πs =
∑

s′∈S

P (s′, s) · πs′ for each s ∈ S;

∑

s∈S

πs = 1.
(1)

A sufficient condition for this system to have a unique
solution is that the Markov chain is irreducible and
has a finite eager attractor (see Theorem 4.1). For
finite Markov chains, the solution can be computed if
it exists. We will show how to approximate it for a
class of infinite Markov chains. Formally, we define
the following computation problem.

Steady State Distribution

Instance

• An effective irreducible Markov chain M =
(S, P ) that has a finite eager attractor A with
parameter β.

• A state s.

• An error tolerance ε ∈ R>0.

Task Compute a number πε
s ∈ R such that

|πε
s − πs| ≤ ε.

The Expected Residence Time. Given a Markov
chain, an initial state sinit and a state s, define the
expected residence time in s when starting from sinit

as Res(sinit , s) := climn→∞ P(sinit |= ©=ns). This
is a proper generalization of the steady state distribu-
tion. We prove in Lemma 6.1 that it always exists for
Markov chains with a finite eager attractor, as opposed
to the steady state distribution. When the steady state
distribution exists, the two quantities are equal (see
Theorem 4.1).

The associated computation problem is as follows.

1also known as the limiting or stationary distribution.

Expected Residence Time

Instance

• An effective Markov chain M = (S, P ) that
has a finite eager attractor A with parameter β
and where it is decidable for all states s, s′ ∈ A
whether s |= ∃3s′.

• An initial state sinit and a state s.

• An error tolerance ε ∈ R>0.

Task Compute a number Resε(sinit , s) such that
|Resε(sinit , s)−Res(sinit , s)| ≤ ε

Here we have introduced the requirement that reach-
ability is computable for states in the attractor. In our
algorithms, this will be used to compute the BSCCs
of the Markov chain. Observe that this condition is
much weaker than requiring decidable reachability for
all pairs of states; in particular, it only requires a cor-
rect yes/no answer to finitely many questions.

The Limiting Average Expected Reward. Given
a Markov chain M = (S, P ), a reward function is a
mapping f : S → R from states to real numbers.
Given a reward function f , we extend it to finite paths

by f(π) :=
∑|π|

i=0 f(π(i)), the “accumulated reward”
for π. The average expected reward in the first n steps
starting from sinit is Esinit

n (f) := 1
n+1

∑

π∈Πn
sinit

P(π) ·

f(π). We study the limiting average expected reward,
defined as Gsinit

(f) := limn→∞ Esinit

n (f), i.e., equiva-
lently, Gsinit

(f) = climn→∞

∑

π∈Πn
sinit

P(π) · f(π). In-

tuitively, this quantity expresses the average reward
per step in the long run.

Throughout this paper, we assume f is computable
and bounded, meaning that ∃M.∀s ∈ S.|f(s)| ≤ M .
Under this assumption, we show in Lemma 7.1 that the
limiting average expected reward exists for all Markov
chains with a finite eager attractor.

We define the computation problem as follows.

Limiting Average Expected Reward

Instance

• An effective Markov chain M = (S, P ) that
has a finite eager attractor A with parameter β
and where it is decidable for all states s, s′ ∈ A
whether s |= ∃3s′.

• An initial state sinit .

• A computable reward function f : S → R

bounded by M .

• An error tolerance ε ∈ R>0

Task Compute a number Gε
sinit

(f) ∈ R such that
|Gε

sinit
(f)−Gsinit

(f)| ≤ ε.
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4 Overview of the Algorithms

In this section, we give intuitive descriptions of the
algorithms which are formally stated in the following
sections. We start with a key theorem that lists im-
portant properties of irreducible Markov chains with a
finite eager attractor.

In order to state the theorem, we define the expected
return time relative to a state s as ms :=

∑∞
i=1 i·P(s |=

©3
=i−1{s}).

The theorem relates the steady state distribution,
the expected return time, the expected residence time,
and the limiting average expected reward. Observe
that the theorem only characterizes these quantities
without indicating how to compute them. The topic
for the remainder of this paper is to show that they
can be approximated to arbitrary precisions.

Theorem 4.1 The following holds for an irreducible
Markov chain with a finite eager attractor.

(i) The linear equation system (1) has a unique so-
lution;

(ii) the solution is given by πs = 1/ms, for all s ∈ S;

(iii) for all s ∈ S, πs = Res(s′, s), where s′ ∈ S can
be chosen arbitrarily;

(iv) for any initial state sinit and any bounded reward
function f , Gsinit

(f) =
∑

s′∈S πs′ · f(s′).

In particular, the limiting average expected reward
does not depend on the initial state. We thus simply
write G(f) instead of Gsinit

(f) when the Markov chain
is irreducible and has an eager attractor.

Proof. Take a state sA ∈ A. We first prove that the
expected return time for sA is finite. Once this is done,
the claims will follow from classical results. Consider
the Markov chain M′ = (S′, P ′) which is identical to
M except we split sA into two states like in the follow-
ing picture.PSfrag replacements

M M′

sA sA sB=⇒

Formally, we take S ′ = S ∪ {sB} where sB is a new
state, and for all s0, s1 ∈ S′,

P ′(s0, s1) =























1 if s0 = sA and s1 = sB ;
0 if s0 = sA and s1 6= sB ;
0 if s0 6= sA and s1 = sB ;
P (sA, s1) if s0 = sB ;
P (s0, s1) otherwise.

Clearly, A′ := A ∪ {sB} is a finite eager attractor for
M′, and

P(sA |=©3
≥n−1{sA}) = P ′(sB |=©3

≥n−1{sA})

= P ′(sB |= 3
≥n{sA}),

where the second equality holds since sB 6= sA.
Since we have a finite eager attractor, Theorem 6.1

of [3] with initial state sB and final states F = {sA}
implies that there is an α < 1 and a constant c ∈ R>0

such that for all n ∈ N>0, P ′(sB |= 3
≥n{sA}) ≤ cαn.

It follows that
∑∞

i=1 i · P(sA |= ©3
≥i−1{sA}) ≤

c ·
∑∞

i=1 i · αi < ∞, i.e., msA
(relative to M) is fi-

nite. Since the Markov chain is irreducible, [23, Theo-
rem 3.6.i, p. 81] implies that ms is finite for every s ∈ S.
A Markov chain where all expected return times are fi-
nite is called positive recurrent.

Now, (i), (ii), (iii), and (iv) follow from The-
orem 3.18 (p. 111), the second equality of equa-
tion (3.144) (p. 108), Theorem 3.17 (p. 109), and The-
orem 3.23 (p. 140) of [23], respectively. 2

The Steady State Distribution. Algorithm 1 works
in two steps.

1. It computes a finite set Rε of states such that

∑

s∈S−Rε

πs <
ε

3
. (2)

We take Rε as the set of states reachable from
some state in the attractor in K steps, for suffi-
ciently large K. Lemma 5.1 shows how to use the
parameter β of the eager attractor to find K. The
steady state probability for states s outside Rε can
thus be approximated by πε

s = 0.

2. For each state s ∈ Rε, it computes an approxima-
tion πε

s such that

∑

s∈Rε

|πε
s − πs| <

2ε

3
. (3)

We approximate ms, and apply Theorem 4.1(ii) to
obtain the approximation πε

s of πs.

By combining (2) and (3), we see that the algorithm
solves a more general problem than the one defined in
the previous section. It approximates the steady state
distribution for all states, in the sense that

∑

s∈S

|πε
s − πs| ≤ ε. (4)

The Expected Residence Time. We show that the
expected residence time for s when starting in sinit is

5



0 if s is not in a BSCC, while if s ∈ Bi, it is the steady
state probability of s with respect to the Markov chain
induced by Bi, weighted by the probability to reach Bi

from sinit . Here is an outline of Algorithm 3, which
solves this problem.

1. Find the intersection A1, . . . , Ar of each BSCC of
the Markov chain with the attractor. This can
be done due to our assumption that s |= ∃3s′ is
decidable for all s, s′ ∈ A.

2. For each BSCC Bi, apply the method of Algo-
rithm 1 on the Markov chain induced by Bi, to
find a set Rε

i ⊆ Bi such that
∑

s∈Bi−Rε
i
πs < ε.

3. If s ∈ Rε
i for some i, do the following. First use

Algorithm 1 to compute an approximation πε
s of

πs in the Markov chain induced by Bi. Then use
Algorithm 2 to compute an approximation bε

i of
P(sinit |= 3Bi). Finally, return bε

i · π
ε
s.

4. If s 6∈ Rε
i for all i, return 0.

Remark. Observe that in step 3, computing an ap-
proximation bε

i of P(sinit |= 3Bi) can be done by a
path exploration starting in sinit , since the probabil-
ity to reach A ∩ (B1 ∪ · · · ∪ Br) is 1. This is similar,
but not the same, to the result in [2], since in [2] the
algorithm requires that reachability is decidable for all
pairs of states while we only require decidability in the
attractor.

The Limiting Average Expected Reward. First,
we compute the limiting average expected reward for
irreducible Markov chains and then we extend the algo-
rithm to non-irreducible Markov chains. This is analo-
gous to the expected residence time: we computed the
steady state distribution for irreducible Markov chains,
and then extended it to the expected residence time for
non-irreducible Markov chains.

1. Algorithm 4 solves the problem under the assump-
tion that M is irreducible. Recall from Theo-
rem 4.1 that the limiting average expected re-
ward does not depend on the initial state for such
Markov chains.

Given a reward function f , recall that f is bounded
by M and let ε1 = ε/M . First, the algorithm
finds the set Rε1 and the approximation πε1

s for
all s ∈ Rε1 as in Algorithm 1. Then, it returns
∑

s∈Rε1
πε1

s · f(s).

2. Next, in Algorithm 5 we remove the assumption
that M is irreducible. For a BSCC Bi, we use
G(i)(f) to denote the limiting average expected
reward of the induced Markov chain Mi.

First, for each BSCC Bi, we compute an approxi-
mation bε

i of the probability to reach Bi from sinit .
Then, for each BSCC Bi, we use Algorithm 4 to
compute an approximation Gε

(i)(f) of G(i)(f). Fi-

nally, we return
∑r

i=1 bε
i ·G

ε
(i)(f).

5 The Steady State Distribution

In this section, we give an algorithm to solve
Steady State Distribution. We first show how to
find the set Rε such that (2) is satisfied and then how
to compute the approximation πε

s so that (3) holds.

Computing Rε. Take Rε as the set of states reachable
in at most K steps from some state in the attractor,
for a sufficiently large K. If a run contains a state
s ∈ S−Rε, then the last K states before s cannot be in
A. Intuitively, such “long” sequences of states outside
the attractor occur “seldom” because the attractor is
eager, and thus the steady state probability for states
outside Rε is “small”.

For all k ∈ N, let A≤k := {s ∈ S : ∃s′ ∈ A.s′ |=
∃3≤ks}. We define A=k := A≤k − A≤k−1 (where
A≤−1 = ∅), i.e., A=k consists of all states that can
be reached in k steps from some state in A but not
in less than k steps from any state in A. In partic-
ular, A≤0 = A=0 = A. Note that A=k is finite for
all k since the Markov chain is finitely branching and
⋃∞

k=0 A=k = S.

Lemma 5.1 Given an irreducible Markov chain that
has a finite eager attractor A with parameter β, we
have

∑

s∈S−A≤K πs ≤ ε, for each ε > 0 and K ≥
log ε−2 log(1−β)

log β .

Proof. For any sinit ∈ A and k ≥ 1, we have by The-
orem 4.1(iii)

∑

s∈A=k

πs =
∑

s∈A=k

clim
n→∞

P(sinit |=©
=ns) =

clim
n→∞

∑

s∈A=k

P(sinit |=©
=ns) = clim

n→∞
P(sinit |=©

=nA=k)

where the sum and limit commute because the sum
is finite. The runs in (sinit |= ©=nA=k) visit A for
sure in step 0 (since sinit ∈ A), they may visit A in
steps 1, . . . , n − k, but they cannot visit A in steps
n−k+1, . . . , n (by the definition of A=k). Let i be the
step in which A is last visited before the nth step and let
s′ ∈ A be the state visited at that point. Graphically,
any run in (sinit |=©

=nA=k) looks as follows:

PSfrag replacements

sinit ∈ A s′ ∈ A A=k

0 ≤≤ i n− k n
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We split into disjoint cases and sum over all possible
values for s′ and i:

P(sinit |=©
=nA=k)

≤
n−k
∑

i=0

∑

s′∈A

P(sinit |=©
=is′) · P(s′ |=©(3≥n−iA))

≤
n−k
∑

i=0

∑

s′∈A

P(sinit |=©
=is′) · βn−i

≤
n−k
∑

i=0

βn−i =
βk − βn+1

1− β
,

where β is the parameter of eagerness and the last in-
equality holds because

∑

s′∈A P(sinit |= ©
=is′) ≤ 1.

Combining the two equations above, we obtain

∑

s∈A=k

πs = clim
n→∞

P(sinit |=©
=nA=k)

≤ clim
n→∞

βk − βn+1

1− β
=

βk

1− β
.

In the last equality, we use the fact that the Cesàro
limit equals the usual limit if that exists. We now sum
the above inequality over all k > K:

∑

s∈A>K

πs =

∞
∑

k=K+1

∑

s∈A=k

πs ≤
∞
∑

k=K+1

βk/(1− β)

=
βK+1

(1− β)2
≤ ε,

where the last inequality follows from the choice of K
in the lemma statement. 2

Approximating πs for a state s ∈ Rε. For the case
when s ∈ Rε, we use Theorem 4.1(ii), and obtain πε

s

by approximating ms. By definition, the finite sum
∑N

i=1 i · P(s |= ©3
=i−1{s}) converges to ms as N

tends to infinity. Our algorithm computes this sum for
a sufficiently large N .

The convergence rate is not known in advance, i.e.,
we do not know beforehand how large N must be
for a given ε. However, we observe that 1 − ε/3 ≤
∑

s∈Rε πs ≤ 1, where the first inequality holds since (1)
and (2) are satisfied and the second inequality holds
by (1). Since our approximation of ms increases with
N , the approximation of πs = 1/ms decreases with N .
We can thus approximate πs for all s ∈ Rε simultane-
ously, and terminate when the sum over s ∈ Rε of our
approximations becomes less than 1 + ε/3. It is not
guaranteed to reach 1 in finite time.

Algorithm 1 – Steady State Distribution

Input

An effective irreducible Markov chain M = (S, P ),
a finite eager attractor A with parameter β, a state
s ∈ S, and an error tolerance ε ∈ R>0.
Return value

An approximation πε
s of πs such that |πε

s − πs| ≤ ε.
Constants

K :=
⌈

log(ε/3)−2 log(1−β)
log β

⌉

Rε := A≤K

Variables

n : N (initially set to 0)
{m′

s : R}s∈Rε (initially all are set to 0)

1. if s ∈ S −Rε return 0
2. repeat

3. for each s′ ∈ Rε

4. m′
s′ ← m′

s′ + P
(

s′ |=©(3=n−1s′)
)

· n
5. n← n + 1
6. until

∑

s′∈Rε
1

m′
s′
≤ 1 + ε/3

7. return 1/m′
s

Notice that for a given m, both A≤m and P(s′ |=
©(3=ms′)) can be computed: since the Markov chain
is effective, we can just enumerate all paths of length
m starting from s.

We first show termination. As the number of iter-
ations tends to infinity, m′

s converges from below to
ms by definition. Hence,

∑

s∈Rε 1/m′
s converges from

above to
∑

s∈Rε πs ≤ 1. Thus, the termination con-
dition on line 6 is satisfied after a finite number of
iterations.

It remains to show that the return value is a correct
approximation of πs.

If s ∈ S − Rε, then (2) is satisfied by the choice of
K and Lemma 5.1.

Otherwise, by Lemma 5.1 together with the choice
of Rε, 1− ε/3 ≤

∑

s∈Rε πs. By the termination condi-
tion on line 6,

∑

s∈Rε
1

m′
s
≤ 1 + ε/3. Combining these

inequalities gives
∑

s∈Rε
1

m′
s
−

∑

s∈Rε πs ≤ 2ε/3. By

Theorem 4.1(ii) and since m′
s ≤ ms, we thus have

∑

s∈Rε

∣

∣

∣

∣

1

m′
s

− πs

∣

∣

∣

∣

=
∑

s∈Rε

(

1

m′
s

− πs

)

≤
2ε

3
.

Thus, (3) and hence also (4) are satisfied. In other
words, the algorithm returns a value for πε

s such that
the sum of errors over all states does not exceed ε.

6 The Expected Residence Time

We give an algorithm to approximate the ex-
pected residence time for arbitrary Markov chains with
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finite eager attractors (not necessarily irreducible).
Throughout this section, we fix an effective Markov
chain that has a finite eager attractor A with parameter
β and use the notation from section 2 (paragraph Bot-
tom Strongly Connected Components). For all s ∈ B′,
let πs denote the steady state probability of s relative
to the Markov chain induced by the BSCC to which s
belongs. We are now ready to state a key lemma used
in this section.

Lemma 6.1 In a Markov chain with a finite eager at-
tractor, for any initial state sinit , the expected residence
time Res(sinit , s) always exists and satisfies

Res(sinit , s) =

{

P(sinit |= 3Bi) · πs if s ∈ Bi;
0 if s 6∈ B′.

Proof. For any N ≥ 0, we have

Res(sinit , s) = clim
n→∞

P(sinit |= ©=n
s) =

clim
n→∞

P(sinit |= ©=n
s|sinit |= 3

≤N
A

′)·P(sinit |= 3
≤N

A
′)

+ clim
n→∞

P(sinit |= ©=n
s|sinit |= 3

>N
A

′)·P(sinit |= 3
>N

A
′)

+ clim
n→∞

P(sinit |= ©=n
s|sinit |= 2¬A

′)·P(sinit |= 2¬A
′)

In this expression, the first term will be important.
Denote it by Res≤N (sinit , s). The third term equals
zero by Lemma 2.1. Since the series

∑∞
i=0 P(sinit |=

3
=iA′) converges, we must have limN→∞ P(sinit |=

3
>NA′) = 0. Thus, for any ε > 0, there exists an N

such that

0 ≤ Res(sinit , s)−Res≤N (sinit , s) ≤ ε. (5)

We now prove the two cases of the lemma separately.

Case s 6∈ B′. Then climn→∞ P(sinit |= ©=ns|sinit |=
3

≤NA′) = 0 because s can only be reached in the
first N steps by runs in (sinit |= 3

≤NA′). Hence,
Res≤N (sinit , s) = 0, and (5) reduces to

0 ≤ Res(sinit , s) ≤ ε.

Since this holds for all ε > 0, we must have
Res(sinit , s) = 0.

Case s ∈ Bi. Since P(sinit |= ©=ns|sinit |=
3

≤NAj) = 0 if j 6= i, we have

Res
≤N (sinit , s)

= clim
n→∞

P(sinit |= ©=n
s|sinit |= 3

≤N
A

′) · P(sinit |= 3
≤N

A
′)

= clim
n→∞

N
X

k=0

X

s′∈A′

P(sinit |= ©=n
s|sinit |= (¬A

′) U=k
s
′)

· P(sinit |= (¬A
′) U=k

s
′).

= clim
n→∞

N
X

k=0

X

s′∈Ai

P(sinit |= ©=n
s|sinit |= (¬A

′) U=k
s
′)

· P(sinit |= (¬A
′) U=k

s
′).

We now concentrate on the first factor inside the sums.
For any k ≥ 0 and s′ ∈ Ai, we have

clim
n→∞

P(sinit |= ©=n
s|sinit |= (¬A

′) U=k
s
′)

= lim
n→∞

1

n

n
X

m=1

P(sinit |= ©=m
s|sinit |= (¬A

′) U=k
s
′)

= lim
n→∞

1

n

k
X

m=1

P(sinit |= (¬A′) U=m s)·P(s |= (¬A′) U=k−m s′)

P(sinit |= (¬A′) U=k s′)

+ lim
n→∞

1

n

n
X

m=k+1

P(sinit |= (¬A′) U=k s′)·P(s′ |= ©=m−ks)

P(sinit |= (¬A′) U=k s′)

= clim
n→∞

P(s′ |= ©=n−k
s) = Res(s′, s) = πs.

Observe that in the second equality, the first term does
not depend on n. Therefore, it vanishes as n goes to in-
finity. The last equality follows from Theorem 4.1(iii).

We insert the result into the previous equation and
obtain

Res≤N (sinit , s)

= clim
n→∞

N
∑

k=0

∑

s′∈Ai

πs · P(sinit |= (¬A′) U=k s′)

= πs · P(sinit |= 3
≤NAi).

We combine this with (5) and obtain that for all ε > 0
there is an N such that

0 ≤ Res(sinit , s)− πs · P(sinit |= 3
≤NAi) ≤ ε

Moreover, for any ε > 0 we can choose an N such that

0 ≤ P(sinit |= 3Ai)−P(sinit |= 3
≤NAi) ≤ ε.

It follows that we must have

Res(sinit , s) = πs · P(sinit |= 3Ai). 2

This result indicates how our algorithm works.
Roughly speaking, we approximate the probability to
reach each BSCC, we approximate πs if s ∈ B′, and we
return the product of these quantities.

The Probability to Reach a BSCC. We first give
a path exploration algorithm that approximates the
probability to reach each BSCC. Since we do not re-
quire that reachability is decidable, it is not possible
to check whether s ∈ Bi. However, it suffices to check
whether s ∈ Ai, which is possible since Ai is finite and
can be computed explicitly. Note that unlike the oth-
ers, Algorithm 2 does not require that the attractor is
eager.
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Algorithm 2 – Probability to Reach BSCC

Input

An effective Markov chainM = (S, P ) with a finite
attractor; the intersections {A1, . . . , Ar} of the at-
tractor with each BSCC, an initial state sinit ∈ S,
and an error threshold ε ∈ R>0.
Return value

Lower approximations bε
1, . . . , b

ε
r with bε

i ≤ P(sinit |=
3Bi), such that

∑r
i=1 |b

ε
i −P(sinit |= 3Bi)| ≤ ε.

Variables

n : N (initially set to 0)
bε
1, . . . , b

ε
r : R (initially all are set to 0)

1. repeat

2. for i← 1 to r
3. bε

i ← bε
i + P(sinit |= 3

=nAi)
4. n← n + 1
5. until

∑r
i=1 bε

i ≥ 1− ε
6. return (bε

1, . . . , b
ε
r)

It is easy to see that the algorithm returns a correct
value if it terminates: each time the algorithm reaches
line 4 (but has not yet executed it), for all i : 1 ≤ i ≤ r,

bε
i = P(sinit |= 3

≤nAi) ≤ P(sinit |= 3Ai)

= P(sinit |= 3Bi),

where the last equality follows from Lemma 2.1(ii).
Therefore, the termination condition guarantees that

r
∑

i=1

|bε
i −P(sinit |= 3Bi)| ≤ ε.

It remains to show that the algorithm actually ter-
minates. By Lemma 2.1(i), almost all runs reach A′,
so

∑∞
n=0 P(sinit |= 3

=nA′) = P(sinit |= 3A′) = 1. By
the definition of a convergent sum, there is an N such
that

∑N
n=0 P(sinit |= 3

=nA′) ≥ 1 − ε, and hence the
algorithm terminates.

The Expected Residence Time. We are now ready
to state the algorithm.

Algorithm 3 – Expected Residence Time

Input

An effective Markov chainM = (S, P ), a finite eager
attractor A with parameter β, an initial state sinit ∈
S, a state s ∈ S, and an error tolerance ε ∈ R>0.
Return value

An approximation Resε(sinit , s) of Res(sinit , s) such
that |Resε(sinit , s)−Res(sinit , s)| ≤ ε.

1. Compute the BSCCs A1, . . . , Ar of the finite
graph (A, E) where (s′, s′′) ∈ E iff s′ |= ∃3s′′

2. ε1 ← ε/(4r)
3. ε2 ← 3ε/(4r)
4. for i← 1 . . . r
5. Use the method of Algorithm 1 to compute a

set Rε2
i for the Markov chain induced by Bi

such that
∑

s′∈Bi−R
ε2
i

πs′ ≤ ε2/3.

6. if s ∈ Rε2
i

7. Use the method of Algorithm 1 to compute
approximations πε2

s′ for all πs′ where
s′ ∈ Rε2

i in the Markov chain induced by
Bi, such that

∑

s′∈R
ε2
i
|πε2

s′ − πs′ | ≤ 2ε2/3.

8. Use Algorithm 2 to compute approxima-
tions bε1

j of P(sinit |= 3Bj) for all j, such

that
∑r

j=1 |b
ε1
j −P(sinit |= 3Bj)| ≤ ε1.

9. return Resε(sinit , s) = bε1
i · π

ε2
s

10. return Resε(sinit , s) = 0

Similarly to the previous section, we give a slightly
stronger result than required. In fact, Algorithm 3 ap-
proximates the expected residence time for all states in
the sense that

∑

s∈S

|Resε(sinit , s)−Res(sinit , s)| ≤ ε. (6)

For any i : 1 ≤ i ≤ r, Lemma 6.1 implies

∑

s∈R
ε2
i

|Resε(sinit , s)−Res(sinit , s)|

=
∑

s∈R
ε2
i

|bε1
i · π

ε2
s −P(sinit |= 3Bi) · πs|

=
∑

s∈R
ε2
i

|bε1
i · (π

ε2
s − πs) + (bε1

i −P(sinit |= 3Bi)) · πs|

≤
∑

s∈R
ε2
i

|πε2
s − πs|+ |b

ε1
i −P(sinit |= 3Bi)|

≤ 2ε2/3 + ε1 = 3ε/(4r).

Hence,

∑

s∈R
ε2
1

∪···∪R
ε2
r

|Resε(sinit , s)−Res(sinit , s)| ≤ 3ε/4.
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Moreover, by the condition on line 5 of the algorithm,
we have

∑

s∈B′−(R
ε2
1

∪···∪R
ε2
r )

|Resε(sinit , s)−Res(sinit , s)| ≤ ε/4.

For states s ∈ S − B′, the error in the approximation
is 0, and hence (6) follows.

Remark. In Algorithm 2, we can replace Ai by any
subset of Bi, since each state of Bi is reached with
probability 1 if Bi is reached. (This holds because the
attractor is reached infinitely often, and each state is
reachable from the attractor with some positive prob-
ability.) The larger this set is, the faster Algorithm 2
will converge. In our case, we have already computed
the set Rε

i for some i. Since it satisfies Ai ⊆ Rε
i ⊆ Bi,

we can re-use it here instead of Ai.

7 Limiting Average Expected Reward

In this section, we show how to compute arbitrarily
close approximations of the limiting average expected
reward for a Markov chain with a finite eager attractor.

First, Algorithm 4 relies on Theorem 4.1(iv) to com-
pute the limiting average expected reward for an irre-
ducible Markov chain. Recall that the limiting average
expected reward in an irreducible Markov chain is in-
dependent of the initial state.

Then, Algorithm 5 combines outputs from Algo-
rithm 2 and Algorithm 4 in order to approximate the
limiting average expected reward in a non-irreducible
Markov chain.

Algorithm 4 –

Limiting Average Expected Reward–Irreducible

Input

An effective irreducible Markov chain M = (S, P ),
a finite eager attractor A with parameter β, a com-
putable reward function f bounded by M , and an
error tolerance ε ∈ R>0.
Return value

An approximation Gε(f) of G(f) such that |Gε(f)−
G(f)| ≤ ε.

1. ε1 ← ε/M
2. Use methods from Algorithm 1 to compute the

set Rε1 and the approximations {πε1
s }s∈Rε1

such that
∑

s∈S−Rε1 πε1
s < ε1/3 and

∑

s∈Rε1 |π
ε1
s − πs| < (2ε1)/3.

3. return
∑

s∈Rε1 πε1
s · f(s)

We now show correctness. By applying Theo-
rem 4.1(iv), the triangle inequality, and (4), we see

that the error in the approximation is

∣

∣

∣

∣

∣

∑

s∈Rε1

πε1
s · f(s)−G(f)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

s∈Rε1

(πε1
s − πs) · f(s)−

∑

s∈S−Rε1

πs · f(s)

∣

∣

∣

∣

∣

≤
∑

s∈Rε1

|πε1
s − πs| ·M +

∑

s∈S−Rε1

πs ·M

≤
2ε1
3
·M +

ε1
3
·M = ε.

Non-irreducible Markov Chains. Given a Markov
chain with a finite eager attractor and a reward func-
tion f , recall that for a BSCC Bi, G(i)(f) denotes
the limiting average expected reward of the induced
Markov chainMi.

The following lemma is used analogously to the way
Lemma 6.1 was used in Section 6.

Lemma 7.1 For any Markov chain with a finite eager
attractor, for any initial state sinit and any bounded
reward function f , Gsinit

(f) always exists and satisfies

Gsinit
(f) =

r
∑

i=1

P(sinit |= 3Bi) ·G(i)(f).

In order to prove Lemma 7.1, we first prove the fol-
lowing.

Lemma 7.2 For any Markov Chain M with an ea-
ger finite attractor A and any state sinit , the following
holds for each BSCC Bi and each N ≥ 0.

lim
n→∞

Es
n(f |sinit |= 3

≤NAi) = G(i)(f).

Proof. Given a state si ∈ Ai, expanding the definition
of Esinit

n (f), we obtain

E
sinit

n (f |sinit |= (¬Ai) U
=k

si)

=

1
n+1

P

π∈Πk
sinit ,si

(Ai)

P

π′∈Πn−k
si

(f(π)−f(si)+f(π′))P (π)P (π′)

P(sinit |= (¬Ai) U=k si)

=

1
n+1

P

π∈Πk
sinit ,si

(Ai)
(f(π) − f(si))P (π)

P

π′∈Πn−k
si

P (π′)

P(sinit |= (¬Ai) U=k si)

+

1
n+1

P

π∈Πk
sinit ,si

(Ai)
P (π)

P

π′∈Πn−k
si

f(π′)P (π′)

P(sinit |= (¬Ai) U=k si)
.

The first term vanishes as n tends to infinity since
|f(π) − f(si)| ≤ kM . In the second term, observe
that by definition we have P(sinit |= (¬Ai) U=k si) =
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∑

π∈Πk
sinit ,si

(Ai)
P (π). Thus, by simplifying, we get

lim
n→∞

Esinit

n (f |sinit |= (¬Ai) U
=k si)

= lim
n→∞

1

n + 1

∑

π′∈Πn−k
si

f(π′)P (π′)

= lim
n→∞

1

n + 1 + k

∑

π′∈Πn
si

f(π′)P (π′)

= G(i)(f).

Finally,

lim
n→∞

E
sinit

n (f |sinit |= 3
≤N

Ai)

=
X

si∈Ai

N
X

k=0

lim
n→∞

E
sinit

n (f |sinit |= (¬Ai) U
=k

si)·

P(sinit |= (¬Ai) U
=k

si|sinit |= 3
≤N

Ai)

= G(i)(f)
X

si∈Ai

N
X

k=0

P(sinit |= (¬Ai) U
=k

si|sinit |= 3
≤N

Ai)

= G(i)(f). 2

Proof. of Lemma 7.1.

Gsinit
(f)

= lim
n→∞

Esinit

n (f)

= lim
n→∞

Esinit

n (f |sinit |= 3
≤NA′) · P(sinit |= 3

≤NA′)

+ lim
n→∞

Esinit

n (f |sinit |= 3
>NA′) · P(sinit |= 3

>NA′)

+ lim
n→∞

Esinit

n (f |sinit |= 2¬A′) · P(sinit |= 2¬A′)

= lim
n→∞

r
∑

i=1

Esinit

n (f |sinit |= 3
≤NAi) · P(sinit |= 3

≤NAi)

+ lim
n→∞

Esinit

n (f |sinit |= 3
>NA′) · P(sinit |= 3

>NA′)

=

r
∑

i=1

P(sinit |= 3
≤NAi) ·G(i)(f)

+ P(sinit |= 3
>NA′) lim

n→∞
Esinit

n (f |sinit |= 3
>NA′).

The first equality holds by definition and the second
by basic probability theory. The third equality follows
from Lemma 2.1. In the last step, we moved the limit
into the sum (which is justified since the sum is finite)
and then used Lemma 7.2. The claim now follows since
P(sinit |= 3

>NA′) can be made arbitrarily small by
taking N big, while |Esinit

n (f |s |= 3
>NA′)| is bounded

by M . 2

Remark. Once Lemma 7.1 is proved, it can be used
to obtain a shorter proof of Lemma 6.1. Given a state

s ∈ S, define the reward function f : S → R by

f(s′) =

{

1 if s′ = s;
0 otherwise.

By unwinding the definitions, it is straightforward to
verify that

• G(i)(f) = Res(s, s) = πs if s ∈ Bi (the second
equality follows from Theorem 4.1(iii)),

• G(i)(f) = 0 if s 6∈ Bi, and

• Res(sinit , s) = Gsinit
(f).

The claim of Lemma 6.1 now follows from Lemma
7.1. 2

The algorithm approximates P(sinit |= 3Bi) and
G(i)(f) for all BSCCs. Then it returns the sum over
all BSCCs of the products of these approximations.

Algorithm 5 –

Limiting Average Expected Reward

Input

An effective Markov chainM = (S, P ), a finite eager
attractor A with parameter β, a computable reward
function f bounded by M , an initial state sinit , and
an error tolerance ε ∈ R>0.
Return value

An approximation Gε
sinit

(f) of Gsinit
(f) such that

|Gε
sinit

(f)−Gsinit
(f)| ≤ ε.

1. Compute the BSCCs A1, . . . , Ar of the finite
graph (A, E) where (s, s′) ∈ E iff s |= ∃3s′

2. ε1 ← ε/(2r); ε2 ← ε/(2M)
3. for i← 1 to r
4. Use Algorithm 4 to compute an approxima-

tion Gε1
(i)(f) of G(i)(f), such that

|Gε1
(i)(f)−G(i)(f)| ≤ ε1

5. Use Algorithm 2 to compute lower approxima-
tions bε2

1 , . . . , bε2
r , with bε2

i ≤ P(sinit |= 3Bi),
such that

∑r
j=1 |b

ε2
j −P(sinit |= 3Bj)| ≤ ε2

6. return
∑r

i=1 bε2
i ·G

ε1
(i)(f)

By applying Lemma 7.1 and the triangle inequality,
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the error in the approximation is
∣

∣

∣

∣

∣

r
∑

i=1

bε2
i ·G

ε1
(i)(f)−Gsinit

(f)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

r
∑

i=1

bε2
i ·G

ε1
(i)(f)−P(sinit |= 3Bi) ·G(i)(f)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

r
∑

i=1

bε2
i · (G

ε1
(i)(f)−G(i)(f))

+ (bε2
i −P(sinit |= 3Bi)) ·G(i)(f)

∣

∣

∣

∣

∣

≤

(

max
1≤i≤r

bε2
i

) r
∑

i=1

|Gε1
(i)(f)−G(i)(f)|

+

(

max
1≤i≤r

G(i)(f)

) r
∑

i=1

|bε2
i −P(sinit |= 3Bi)|

≤ 1 · r · ε1 + M · ε2 = ε/2 + ε/2 = ε.

8 Conclusions and Future Work

We have shown that, for Markov chains with an ea-
ger finite attractor, the expected residence time and
the limiting average expected reward with respect to
bounded reward functions exist, and that those quan-
tities can be effectively approximated by path explo-
ration schemes. Since these only require reachability
information inside the finite attractor, they are appli-
cable even to some systems where general reachability
is undecidable.

One direction for future work is to further weaken
the required preconditions, in order to handle larger
classes of systems. For example, the finiteness con-
dition of the attractor can possibly be replaced by a
weaker condition that symbolic representations of suf-
ficiently likely parts of some infinite attractor can be
effectively constructed. Another possible extension is
to study systems with finite attractors which satisfy
only weaker probability bounds on avoiding the attrac-
tor for n steps, rather than the exponential bound in
our eagerness condition.
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