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Abstract— In this paper a new input/output pairing strategy ~ thereafter form the closed loop MIMO system. The closed
based on minimum variance control is proposed. A similar |oop performance in terms of the output variance is computed
version based on linear quadratic Gaussian (LQG) control is ¢y aach control structure and the pairing corresponding to

also suggested. The strategies are used to compare the ex-th | t outout - . lected. A It i
pected performance of decentralized control structures irsome € lowest output variance IS selected. As an alternatree, w

illustrative examples. The pairing suggestions are compad alSo propose a version based on linear quadratic Gaussian
with the recommendations previously obtained using other (LQG) control.
interaction measures such as the Relative Gain Array (RGA).  The structure of this paper is as follows: In Section II
The new strategies give suitable pairing recommendationsnal the general idea for the new input/output pairing straggie
are easy to interpret. : i . .

Index Terms— Decentralized control, interaction measures, 1S outlined. The two-by-two system that is later considered
multivariable systems. in the theoretical derivations is described in Section Iil.

Section IV the controllers are designed and the expressions

|. INTRODUCTION for the full closed loop MIMO systems for decentralized

A common problem for multiple-input multiple-output control are derived. The proposed pairing strategies are
(MIMO) systems is channel interaction, i.e. when one inpugresented in Section V. In Section VI different interaction
affects several outputs. Therefore, the expected level Bfeasures are compared in three illustrative examplesllfina
coupling between the selected control loops is essential t8€ conclusions are drawn in Section VII.
establish prior to the control structure selection. There a
today several interaction measures that assist in thistgmte
The perhaps most commonly used is the Relative Gain FOr each elementary SISO subsystem of the full MIMO
Array (RGA) introduced by [3]. Later, several extensionglant, the corresponding MV controller is derived. In orter
and modifications to the RGA have been introduced, séssess the performance of different MIMO control structpre
for instance [17] for a review. Other, more recent interacthe SISO controllers are combined to form a closed loop
tion measures include the Gramian-based measures HanR¥pression for the full MIMO system. The loops in the full
Interaction Index Array (HIIA) [22] and the Participation MIMQ system that are not part of the controller are the cross-
Matrix [4], [19]. A Ha-norm based interaction measurecouplings.
was introduced by [2] and further analyzed by [7]. One In the present paper, we restrict the theoretical derimatio
advantage of these measures is that they are not restrict@dwo-by-two systems. However, the extension to larger sys
to decentralized control structures. This is a main restric  tems is straight-forward and is exemplified in the conclgdin
of the RGA. example where a plant with three inputs and three outputs is

In control performance assessment, the lowest possii@alyzed. Note also that the proposed evaluation procedure
output Variance’ the minimum Variance, has been a ké§ not limited to decentralized control structures.
component in many benchmarks since the work of Harris [8] For the design, white unit-variance measurement noise is
two decades ago. The main idea is to compare the calculat@gsumed to be present at the outputs. The process noise
minimum variance with the actual achieved output variancé assumed to have the same characteristics. The reference
and thereby get an indication of the current performance §fgnals are set to zero. Thus the noise sources are the
the controller. [10] gives a review of the intense researcfnly driving signals. The resulting output variances foe th
that has followed in this field. Some of the extensions to theutputs are thereafter calculated and compared for each of
original idea of [8] are made by [9], [12], [14], [23] and the decentralized input-output pairings. The pairingciee
[21]. that results in the lowest sum of the output variances is the

Inspired by the above mentioned work in the field ofnostdesirable control structure in a minimum varianceesens

control performance assessment we here propose a new &id is recommended. The channel interaction in the system
put/output pairing strategy based on minimum variance (MV\)\HII_ manifest itself as an extra contribution to the output
control. The key idea is to design single-input single-otitp variances.

(SISO) MV controllers for each input/output pairing and As an alternative, the same procedure is repeated but

with the MV controllers replaced by LQG controllers. The
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Il. THE GENERAL IDEA



design scenario where the user can select LQ weights of IV. CONTROL DESIGN

desire. Furthermore, to get stable controllers, the desfgn  For each SISO subsystem, both a MV controller and a

MV controllers requires minimum-phase systems. This is QG controller were designed. The subsystems were then

a requirement in the LQG design. connected to form the full closed loop system. Different

control structures, i.e. different pairings of the inputeda

outputs, give different closed loop expressions for thé ful
Consider a stable linear discrete-time MIMO system witlsystem. These are derived in this section.

two inputs,u; andus, and two outputsy; andys. The trans-

fer function matrixG(q) of the system can be partitioned a

IIl. SYSTEM DESCRIPTION

A Minimum variance (MV) control
The state-space version of minimum variance control for

G(q) = gllgq; ngEq§ ) (1) ageneral SISQ syste(mﬁl, B, (C,0) is obtained by requiring
214 229 the d-step prediction of the output to be zero [16]:
Figure 1 gives a graphical representation of the considereﬂt 1dlt) = CA™(t+1)

system and its cross-couplings. The subsystémsgq) and a1 .
Ga1(q) represents the cross-couplinggif is controlled by CATH((A = KCO)2(t) + Bu(t) + Ky(t))
uy and y, by ug. The subsystems;;(q) are assumed to =0 3
be strictly proper and can hence be equivalently expressgd . a 7 is

in state space form represented by the system matric@stem,fc(t) is the estimate of the state vectoft) using
(Aij, Bij, Cij,0). In the design of the controllers, it is as- Jaasurements up to time instant 1:

sumed that process noise and measurement noise are present.
A state-space representation of the full system is thusngive E(t+1) = A2(t) + Bu(t) + K (y(t) — C(t)). (4)
by

the number of delay-steps in the considered

K is the Kalman gain given by

I(t + 1) = Afd?(t) + Bfu(t) + wa(t), K = APCT(CPCT 4 Re)_l (5)
t) = Crx(t)+e(t). 2
y() ra(t) +elt) @ where P is the positive semidefinite solution to the discrete-
where time Riccati equation
[ g;gg S W P = APAT 4+ NR,NT — APCT(CPCT + R.)"'CPAT
z(t) = z21(t) As = 0 0 As1 O ’ ) o ) (6)
| x22(¢) 0 0 0 Azz where R, and R, are the intensities of the noise ande,
r By 0 respectively. This gives the control law
B, — 0 B2 = Cii Ci2 O 0 d—1p\—1v gd—1 -
F o= Boy 0 Cr=1 9 0 Cor O |7 u(t)=—(CAT'B)TICA((A—- KC)2(t) + Ky(t)).
L O Bao (7)
y(t) = [n(®) y(0]" B. Linear quadratic Gaussian (LQG) control

{w(t)} and{e(t)} are white noise sequences with diagonal Optimal linear control for a general SISO system
covariance matrices, i.e. the noise components are assumiéd B, C,0) is obtained by minimizing the criterion [5]

to be uncorrelated. Observe that all system matrices may be _ T T

block matrices. Therefore, the zeros may also be matrices V= Ezt:z ()Qux(t) + u” () Q2ult) (8)

(with zeros in all elements) of appropriate dimensions. _ _ .
where E is the expectation operator. In the following, the

first weight in criterion (8) is chosen a3, = C7Q.C in
order to penalize the outputs rather than the states. TVes gi

u, Gll(q) Y the crlterl?n ) )
V=EY y"()Quy(t) +u" (t)Qau(t). 9
t
> G12(q) The following LQG control law is used:
u(t) = —La(t|¢)
| Gyi(9) = —L(I — MC)i(t) — LMy(t), (10)
Z(t+1) = Az(t) + Bu(t) + K (y(t) — CZ(t))  (11)
U, ——> GZZ(C[) V> wherez(t|t) is the estimate of(t) that uses measurements
up to time instant, M is the innovation update gain obtained
as

Fig. 1. Block diagram of the considered system. M = PCT(CPCT 4 Re)fl (12)



whereP is the positive semidefinite solution to the discretefor 4, j € {1,2}, and, finally,[.J}V];; is elementkl in the
time Riccati equation given in (6)L is the optimal gain corresponding matrix/"V (defined in Equation (16)) for
given by subsystemj;.
L=(BTSB+Q,) 'BTSA (13) For the decentralized pairing choige — us andy, — uy,
the full closed loop system with MV control is
where S is the positive semidefinite symmetric solution to

o MV MV
the discrete-time Riccati equation X(t+1) = diag(Afy, Fiz ", Fa1 ', A5) X (t)

[ Nii O 0 0 T
S=ATSA+Q, — ATSB(BTSB + Q,) 'BTSA. (14) 0o 0 0 0
0 Niz [J5 ]2 0 w1 (t)
C. Closed loop systems N 0 0 [Ji5V]22 0 v wa(t)
The closed loop system can generally be expressed as évﬂ 8 8 { Mv} 223
z(t+1) | x(t) w(t) 0 Naz 0
{i(t—i—l)]_F[j:(t) ey | Lo 0 0 0 ]

(19)

t t
yt)=[C 0] { ;8 ] +[0 1] { 1:(2)) ] . (15)  with outputs given in (18).
The LQG controller corresponds 1 = FLQ¢ andJ =
The closed-loop system with the MV controller in (7), isJ*?¢ where

given by (15) withf” = FMV and.J = JMV where oG _ { A—BLMC  —BL(I— MC)
[FMV],, = A—B(CA™'B)"'CA“'KC, KC—-BLMC A—-KC-BL(I-MC)
[F"V]ie = —B(CA'B)'CA™ (A - KC), JERG { N —BLM 20)
FMV]y = (K- B(CA“'B)"'CA* K)C, 0 K-BLM
[FMV]y, = A-B(CA“'B)"'CA™'(A-KkC)— K¢, Thefullclosed-loop system is derived for the two decentral
U o 1y ade1 ized pairingsy; —u; andys, — us, andy; — us andys — ug,
JMV — N —-B(CA"™B)"CA™ 'K respectively. The full closed loop system for the first payri

0 K-B(CA"'B)'CATK | choicey; — u; andy, — us is given by

(16)
_ X(t+1) = diag(F{i%%, ALy, A%y, Fas29) X (t)
If MV controllers are designed for each SISO subsystem of

. TNy 0 [JE2%12 0 1
the MIMO system in (2), then the full closed loop system H Yoe?
can be expressed as 0 0 Joz 0
0 N12 0 0 w1 (t)
X(t+1) = diag(FV, ASy, ASy, Fay V)X (¢) n 0 0 0 0 ws (t)
"Ny 0 [V, 0 . N2y 0 0 0 ei(t)
0 0 [JMV] 0 0 0 0 0 Lo eg(t)
0 N12 0 0 w1 (t) 0 N22 0 [J2L2ZG]12
0 0 0 0 wa(t) Lo 0 0 (25" |22 |
+ N21 0 0 0 €1 (t) ’ (21)
0 0 0 0 ea(t
0 Na 0 MV 15 2(t) [7/%] 1 is elementil in the corresponding matrid “@¢
0 0 0 [TV )22 (defined in Equation (20)) for subsystem
) ) an The corresponding system for the other decentralized
pairing choicey; — us andys — uq, IS
vi(t) | _ [ Cu 0 Ciz 00 0 0 0 X(#) X(t+1) = diag(ASy, F{5%¢, F3,%9, A5) X (t)
y2(t) - 0 0 0 0 Cxn 0 Ci O r N 0 0 0 1
w1 (t) 0 0 0 0
0 01 0 wa(t) 0 Ni [J5%%e 0 w1 (t)
+ { 00 0 1 } ex(t) (18) Lo o [JLQG]22 0 wa(t)
62( ) Ni 0 0 [JLQG]H ei(t)
for the decentralized pairing choigg — u; andys — ug, 0o 0 0 [J3:2 22 e2()
where 0 No2 0 0
L O 0 0 0 J
X(t) = [#ht) 2 =0t &) .. (22)
cap(t) @5,() wa,(t) E5()]7, with outputs given by (18).
diag(A1, A2, Az, A4) denotes a block diagonal matrix with V. CONTROL STRUCTURE SELECTION

the matrices4,, A,, A3z and A, along the diagonalf;}""

. . . As a measure of the performance of the considered control
is the corresponding closed loop system for subsystem

structure, the sum of the output variande$cov{y}), is here
e — Ai; 0 used. This measure gives an indication of how appropriate
710 0 the control structure is compared to other structures, and



. o - . TABLE |
will here be used as a criterion when pairing the inputs ang
. UTPUT VARIANCES FORMV AND LQG CONTROL IN EXAMPLE 1. THE
outputs. The control structure that gives the smallest sum |

the structure that has the most desirable pairing combinati
in @ minimum variance sense.
The very same criterion is here used both with MV

PAIRING IS SPECIFIED ASi — j WHERE4 IS THE OUTPUT INDEX ANDj
THE INPUT INDEX. THE CONTROLLER TYPE DENOTEDLQG11S
DESIGNED WITHQ2 = 1 AND LQG2WITH Q2 = 1-1079.

control and with LQG control. The latter version is useful if ~5in5 T Controller type | var{y:} | variya} 2 var{yi}
(CA*~1B)~' does not exist for some subsystem, when the 77 55wy 10513 1oseal 21376
system is not minimum-phase or when it is desired to have LQG1 10652 | 1.1077 21729
the possibility to specify the weights in a LQG design. To LQG2 10513 | 1.0864 21376
get a stable MV controller, it is required that the system iS5 57 [ v 11011 1.1796 2 2807
minimum-phase. Note again, that the pairing strategy is not LQG1 11026 | 1.1865 22891
limited to decentralized control structures. However, he t LQG2 11011 | 1.1796 2 2807

present paper, only decentralized structures are compared
The output variances were calculated in the following way:

The stationary state covariance matfix= Exz(t)2"(t) =  minimum-phase model is given by the following state space

Ex(t + 1)27(t + 1) for a stable state space systeMmatrices:

(4, B, C,0) with process noise intensity?, was found by

solving the discrete-time Lyapunov equation [20] —0.0159 0 0.159 0
A - 0 —0.0159 0 0.02651
I = AIA" + N*BB”. (23) |0 0 ~0.159 0 ’
0 0 0 —0.02651

The stationary output covariance matrix was then obtained r 0.05459 0
as . s _ |0 0.07279

cov{y} = CIIC". (24) ~lo 0.0182 |’
If the measurements of the outputs are noisy, the noise L 0.03639 0
intensities have to be added to the output variances oltaing, _ |1 0 0 0} 5 100 (25)
[ 010 0] 0 0|
in (24). i

VI. EXAMPLES The obtained (theoretical) output variances are given in

In this section three examples are presented where ygble 1. Clearly, the pairing combinatien —y, andus —y»
proposed pairing strategies are used in order to deci&gsults in th.e smallest output variances for both of the _LQG
appropriate decentralized control structures. The suyess control settings as well as the MV control. Hence, in a

are also compared with the ones previously obtained usifgnimum variance sense, this is the recommended pairing
some other interaction measures (see [6] and [7]). selection. Note that, in this case the system is minimum

P-4 o . -9 .
In the examples it is assumed that the process noise Qase, and LQG C(_)ntrol Witl), = 1- 107" results in
additive on the inputs, i.eN — B, and for this reason the same output variances as the MV control. In [6], RGA,

that w; = w;. All noise sequences are assumed to bEIIIA, PM and X, are used in the study of this process.

white and have unit variance. Prior to the control desigﬁA_II of th(lase _|r_1ter:;1ct|c(;n me;’:tsmlj_resdrecotrnrrend the very same
all of the considered systems were sampled with a samplirﬁi(ﬁagona pairing for decentralized control.
period of 1 s. In the LQG control design the LQ weightsg Example 2

in the used criterion (9) were selected in two ways. First, ] ) ) )
Q; = 1, ,j € {1,2}. This is a reasonable choice that has Now consider the continuous-tin2ex 2 process given by

the possibility of giving controllers with output variarsce 5e—40s e 4s
only marginally higher than with minimum variance control G(s) = | Vst 10sf} (26)
(but with substantially lower variances of the control sitg), 10s+1  100s+1

see [1]. This is confirmed in the presented examples below.is the Laplace variable. This process has been extensively
Secondly,Q; = 1 and Q. = 1-10~°. This choice corre- analyzed by [18] and [24] with the conclusion that the anti-
sponds to LQG control that will be very close to minimumdiagona| pairing combinatiog —u» andys —u; is preferred
variance control (for minimum-phase systems), but with thgyr decentralized control. One reason for this is that thé an
advantage of not being restricted to minimum-phase systergggonal pairing combination corresponds to faster elésnen
to get stable controllers. in G. [18] came to this conclusion using the Dynamic
Relative Gain Array (DRGA) and verified it in a simulation
study involving optimal decentralized Pl controllers. J24

In the first example the interactions present in a quadruplesed the Effective Relative Gain Array (ERGA) with the
tank system will be examined (see [15] for a general descrigame result. In [6], [7] theZ; was used to find the very
tion of this process). The considered continuous-timealine same pairing recommendation.

A. Example 1



TABLE Il TABLE Il
OUTPUT VARIANCES FORLQG CONTROL IN EXAMPLE 2. THE PAIRING THE SUM OF THE OUTPUT VARIANCES FORLQG CONTROL IN EXAMPLE

IS SPECIFIED ASi — j WHERE? IS THE OUTPUT INDEX ANDj THE INPUT 3. THE PAIRING IS SPECIFIED ASi — j WHERE? IS THE OUTPUT INDEX
INDEX. THE CONTROLLER TYPE DENOTEDLQG11S DESIGNED WITH AND j THE INPUT INDEX. THE CONTROLLER TYPE DENOTEDLQGL1IS
Q2 =1AND LQG2WITH Q2 = 1-1079. DESIGNED WITHQ2 = 1 AND LQG2WITH Q2 = 1-10~9.
Pairing | Controller type | var{y1} | var{y2} Ef;l var{y;} Pairing Controller type 27?:1 var{y;}
11,22 | MV 1.1368 | 2.3358 3.4727 1-1, 2-2, 3-3| MV 75.7614
LQG1 1.1440 | 2.3430 3.4870 LQG1 75.7860
LQG2 1.1368 | 2.3358 3.4727 LQG2 75.7704
1-2,2-1| MV 1.1707 | 1.9623 3.1330 1-1, 2-3, 3-2| MV 43.6560
LQG1 1.1736 | 2.0146 3.1882 LQG1 50.3364
LQG2 1.1707 | 1.9623 3.1330 LQG2 49.8111
1-2, 2-1, 3-3| MV 73.6870
LQG1 74.5408
The output variances for MV control and for both of the LQG2 74.2068
LQG control settings indicate that the anti-diagonal pajri 1-2,2-3,3-1| MV 43.0675
combination is the most suitable since this pairing gives th LQG1 50.0170
lowest output variances, see Table Il. This is in contrast to LQG2 49.3745
the static RGA, the HIIA and the PM, but in agreement with 1-3,2-2, 3-1| MV 43.6560
for instanceX,, the RGA evaluated at frequencigs10~*7 LQG1 50.3364
rad/s, and with other findings made by e.g. [18] and [24]. LQG2 49.8111
1-3, 2-1, 3-2| MV 42.1700
C. Example 3 LQG1 49.4106
As a concluding example, consider the 3 process given LQG2 48.6842
by
G(s) = 1—s é.19 1_4'19 :gggg 27) HIIA, the PM and,. However, the pairing combination
(1+ 5s)? 1 1 1 —ug, Y2 —ug andys —u; also gives variances that are very

close to the variances of the suggested pairing. If thenmairi

This process is used by [13] as an example of when thgvmbinations corresponding to negative RGA elements are
static RGA does not recommend the most desirable pairingvoided, the MV and the LQG control criteria give the very
Note that the system is not minimum-phase. Hence, the M¥ame pairing suggestion as the one recommended by [13]
controllers may not be stable. This is the reason for thend [11]. It is further found (see Table Il1) that the diagbna
difference in variance between MV control and LQG contropairing recommended by the RGA is not desirable in a
with @2 = 1- 1077 in this particular example, see Table 3. minimum variance sense. In fact, this pairing results in the

The RGA recommends the diagonal pairing combinatiofargest output variances. There are also two other pairings
y1 — w1, y2 — uz andyz — uz. However, as found by [13] that give low output variances: pairing combinatign— .,
this pairing combination is not suitable due to instabilityy, —u3; andys —u, and pairing combination; —us, o —us
issues. Instead, they recommend the pairing combination and y; — u;.
— us, Y2 — uz andysz — u;. The same pairing suggestion
is found by [11] when considering loop-by-loop interaction VII. CONCLUSIONS
energy. The HIIA, the PM andl, all recommend the pairing  New input/output pairing strategies based on minimum
combinationy; — us, y2 — u; andys —us for decentralized variance control and LQG control have been presented.
control. The RGA also indicates (by negative elements) thathe obtained decentralized input-output pairing suggesti
the pairing combinationy; — us, y» — u; and y3 — uy  for three MIMO plants have been compared with those
should be avoided, see for instance [13]. If the HIIA, thereviously obtained with other interaction measures. Is wa
PM and ¥, are combined with the RGA rule of avoiding found that the proposed pairing strategies give suitable
pairings corresponding to negative RGA elements (this idecentralized pairing suggestions for the studied presess
one component of the pairing rule used by [11]), the HIIAThis motivates a further study of the strategies. In the
the PM andX; suggest the very same pairing combinatiompresent paper only decentralized control structures haga b
as the one recommended by [13] and [11]. considered. However, this is not an inherent limitationhaf t

All six decentralized pairing combinations were evaluatedoroposed pairing strategies since they are able to evaluate
In Table Ill the sum of the output variances is presentethe performance of other control structures as well. This is
for each combination. The proposed pairing criteria aran advantage compared to the RGA. Furthermore, since the
minimized for the pairing combinatiom, — us, y2» —u; and  strategies are based on what control performance that can be
ys — us for MV control and for both of the LQG control expected to be achieved with the designed control strugture
settings. This supports the recommendation made by tlige proposed interaction measures are easy to interpret.
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