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Abstract— In this paper a new input/output pairing strategy
based on minimum variance control is proposed. A similar
version based on linear quadratic Gaussian (LQG) control is
also suggested. The strategies are used to compare the ex-
pected performance of decentralized control structures insome
illustrative examples. The pairing suggestions are compared
with the recommendations previously obtained using other
interaction measures such as the Relative Gain Array (RGA).
The new strategies give suitable pairing recommendations and
are easy to interpret.

Index Terms— Decentralized control, interaction measures,
multivariable systems.

I. I NTRODUCTION

A common problem for multiple-input multiple-output
(MIMO) systems is channel interaction, i.e. when one input
affects several outputs. Therefore, the expected level of
coupling between the selected control loops is essential to
establish prior to the control structure selection. There are
today several interaction measures that assist in this selection.
The perhaps most commonly used is the Relative Gain
Array (RGA) introduced by [3]. Later, several extensions
and modifications to the RGA have been introduced, see
for instance [17] for a review. Other, more recent interac-
tion measures include the Gramian-based measures Hankel
Interaction Index Array (HIIA) [22] and the Participation
Matrix [4], [19]. A H2-norm based interaction measure
was introduced by [2] and further analyzed by [7]. One
advantage of these measures is that they are not restricted
to decentralized control structures. This is a main restriction
of the RGA.

In control performance assessment, the lowest possible
output variance, the minimum variance, has been a key
component in many benchmarks since the work of Harris [8]
two decades ago. The main idea is to compare the calculated
minimum variance with the actual achieved output variance
and thereby get an indication of the current performance of
the controller. [10] gives a review of the intense research
that has followed in this field. Some of the extensions to the
original idea of [8] are made by [9], [12], [14], [23] and
[21].

Inspired by the above mentioned work in the field of
control performance assessment we here propose a new in-
put/output pairing strategy based on minimum variance (MV)
control. The key idea is to design single-input single-output
(SISO) MV controllers for each input/output pairing and
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thereafter form the closed loop MIMO system. The closed
loop performance in terms of the output variance is computed
for each control structure and the pairing corresponding to
the lowest output variance is selected. As an alternative, we
also propose a version based on linear quadratic Gaussian
(LQG) control.

The structure of this paper is as follows: In Section II
the general idea for the new input/output pairing strategies
is outlined. The two-by-two system that is later considered
in the theoretical derivations is described in Section III.In
Section IV the controllers are designed and the expressions
for the full closed loop MIMO systems for decentralized
control are derived. The proposed pairing strategies are
presented in Section V. In Section VI different interaction
measures are compared in three illustrative examples. Finally,
the conclusions are drawn in Section VII.

II. T HE GENERAL IDEA

For each elementary SISO subsystem of the full MIMO
plant, the corresponding MV controller is derived. In orderto
assess the performance of different MIMO control structures,
the SISO controllers are combined to form a closed loop
expression for the full MIMO system. The loops in the full
MIMO system that are not part of the controller are the cross-
couplings.

In the present paper, we restrict the theoretical derivation
to two-by-two systems. However, the extension to larger sys-
tems is straight-forward and is exemplified in the concluding
example where a plant with three inputs and three outputs is
analyzed. Note also that the proposed evaluation procedure
is not limited to decentralized control structures.

For the design, white unit-variance measurement noise is
assumed to be present at the outputs. The process noise
is assumed to have the same characteristics. The reference
signals are set to zero. Thus the noise sources are the
only driving signals. The resulting output variances for the
outputs are thereafter calculated and compared for each of
the decentralized input-output pairings. The pairing selection
that results in the lowest sum of the output variances is the
most desirable control structure in a minimum variance sense
and is recommended. The channel interaction in the system
will manifest itself as an extra contribution to the output
variances.

As an alternative, the same procedure is repeated but
with the MV controllers replaced by LQG controllers. The
minimum variance version can be seen as a version where
the lower bound of what is possible to obtain is calculated,
whereas the LQG version can be seen as a more realistic



design scenario where the user can select LQ weights of
desire. Furthermore, to get stable controllers, the designof
MV controllers requires minimum-phase systems. This is not
a requirement in the LQG design.

III. SYSTEM DESCRIPTION

Consider a stable linear discrete-time MIMO system with
two inputs,u1 andu2, and two outputs,y1 andy2. The trans-
fer function matrixG(q) of the system can be partitioned as

G(q) =

[

G11(q) G12(q)
G21(q) G22(q)

]

. (1)

Figure 1 gives a graphical representation of the considered
system and its cross-couplings. The subsystemsG12(q) and
G21(q) represents the cross-couplings ify1 is controlled by
u1 and y2 by u2. The subsystemsGij(q) are assumed to
be strictly proper and can hence be equivalently expressed
in state space form represented by the system matrices
(Aij , Bij , Cij , 0). In the design of the controllers, it is as-
sumed that process noise and measurement noise are present.
A state-space representation of the full system is thus given
by

x(t + 1) = Afx(t) + Bfu(t) + Nfw(t),

y(t) = Cfx(t) + e(t). (2)

where

x(t) =







x11(t)
x12(t)
x21(t)
x22(t)






, Af =







A11 0 0 0
0 A12 0 0
0 0 A21 0
0 0 0 A22






,

Bf =







B11 0
0 B12

B21 0
0 B22






, Cf =

[

C11 C12 0 0
0 0 C21 C22

]

,

y(t) = [y1(t) y2(t)]
T
.

{w(t)} and{e(t)} are white noise sequences with diagonal
covariance matrices, i.e. the noise components are assumed
to be uncorrelated. Observe that all system matrices may be
block matrices. Therefore, the zeros may also be matrices
(with zeros in all elements) of appropriate dimensions.

G11(q)

G12(q)

G21(q)

G22(q)

u1

u2

y1

y2

Fig. 1. Block diagram of the considered system.

IV. CONTROL DESIGN

For each SISO subsystem, both a MV controller and a
LQG controller were designed. The subsystems were then
connected to form the full closed loop system. Different
control structures, i.e. different pairings of the inputs and
outputs, give different closed loop expressions for the full
system. These are derived in this section.

A. Minimum variance (MV) control

The state-space version of minimum variance control for
a general SISO system(A, B, C, 0) is obtained by requiring
the d-step prediction of the output to be zero [16]:

ŷ(t + d|t) = CAd−1x̂(t + 1)

= CAd−1
(

(A − KC)x̂(t) + Bu(t) + Ky(t)
)

= 0 (3)

where d is the number of delay-steps in the considered
system,x̂(t) is the estimate of the state vectorx(t) using
measurements up to time instantt − 1:

x̂(t + 1) = Ax̂(t) + Bu(t) + K
(

y(t) − Cx̂(t)
)

. (4)

K is the Kalman gain given by

K = APCT (CPCT + Re)
−1 (5)

whereP is the positive semidefinite solution to the discrete-
time Riccati equation

P = APAT + NRvN
T − APCT (CPCT + Re)

−1CPAT

(6)
whereRv and Re are the intensities of the noisew and e,
respectively. This gives the control law

u(t) = −(CAd−1B)−1CAd−1
(

(A − KC)x̂(t) + Ky(t)
)

.

(7)

B. Linear quadratic Gaussian (LQG) control

Optimal linear control for a general SISO system
(A, B, C, 0) is obtained by minimizing the criterion [5]

V = E
∑

t

xT (t)Q1x(t) + uT (t)Q2u(t) (8)

where E is the expectation operator. In the following, the
first weight in criterion (8) is chosen asQ1 = CT Q̃1C in
order to penalize the outputs rather than the states. This gives
the criterion

Ṽ = E
∑

t

yT (t)Q̃1y(t) + uT (t)Q̃2u(t). (9)

The following LQG control law is used:

u(t) = −Lx̂(t|t)

= −L(I − MC)x̂(t) − LMy(t), (10)

x̂(t + 1) = Ax̂(t) + Bu(t) + K
(

y(t) − Cx̂(t)
)

(11)

wherex̂(t|t) is the estimate ofx(t) that uses measurements
up to time instantt, M is the innovation update gain obtained
as

M = PCT (CPCT + Re)
−1 (12)



whereP is the positive semidefinite solution to the discrete-
time Riccati equation given in (6).L is the optimal gain
given by

L = (BT SB + Q2)
−1BT SA (13)

whereS is the positive semidefinite symmetric solution to
the discrete-time Riccati equation

S = AT SA + Q1 − AT SB(BT SB + Q2)
−1BT SA. (14)

C. Closed loop systems

The closed loop system can generally be expressed as
[

x(t + 1)
x̂(t + 1)

]

= F

[

x(t)
x̂(t)

]

+ J

[

w(t)
e(t)

]

,

y(t) =
[

C 0
]

[

x(t)
x̂(t)

]

+
[

0 I
]

[

w(t)
e(t)

]

. (15)

The closed-loop system with the MV controller in (7), is
given by (15) withF = FMV andJ = JMV where

[F MV ]11 = A−B(CA
d−1

B)−1
CA

d−1
KC,

[F MV ]12 = −B(CA
d−1

B)−1
CA

d−1(A−KC),

[F MV ]21 = (K −B(CA
d−1

B)−1
CA

d−1
K)C,

[F MV ]22 = A−B(CA
d−1

B)−1
CA

d−1(A−KC) −KC,

J
MV =

[

N −B(CAd−1B)−1CAd−1K

0 K −B(CAd−1B)−1CAd−1K

]

.

(16)

If MV controllers are designed for each SISO subsystem of
the MIMO system in (2), then the full closed loop system
can be expressed as

X(t + 1) = diag(F MV
11 , A

e
12, A

e
21, F

MV
22 )X(t)

+























N11 0 [JMV
11 ]12 0

0 0 [JMV
11 ]22 0

0 N12 0 0
0 0 0 0
N21 0 0 0
0 0 0 0
0 N22 0 [JMV

22 ]12
0 0 0 [JMV

22 ]22





























w1(t)
w2(t)
e1(t)
e2(t)






,

(17)

[

y1(t)
y2(t)

]

=

[

C11 0 C12 0 0 0 0 0
0 0 0 0 C21 0 C22 0

]

X(t)

+

[

0 0 1 0
0 0 0 1

]







w1(t)
w2(t)
e1(t)
e2(t)






(18)

for the decentralized pairing choicey1 − u1 and y2 − u2,
where

X(t) = [xT
11(t) x̂T

11(t) xT
12(t) x̂T

12(t) ...

... xT
21(t) x̂T

21(t) xT
22(t) x̂T

22(t)]
T ,

diag(A1, A2, A3, A4) denotes a block diagonal matrix with
the matricesA1, A2, A3 and A4 along the diagonal,FMV

ij

is the corresponding closed loop system for subsystemij,

Ae
ij =

[

Aij 0
0 0

]

for i, j ∈ {1, 2}, and, finally,[JMV
ij ]kl is elementkl in the

corresponding matrixJMV (defined in Equation (16)) for
subsystemij.

For the decentralized pairing choicey1 − u2 andy2 − u1,
the full closed loop system with MV control is

X(t + 1) = diag(Ae
11, F

MV
12 , F

MV
21 , A

e
22)X(t)

+























N11 0 0 0
0 0 0 0
0 N12 [JMV

12 ]12 0
0 0 [JMV

12 ]22 0
N21 0 0 [JMV

21 ]12
0 0 0 [JMV

21 ]22
0 N22 0 0
0 0 0 0





























w1(t)
w2(t)
e1(t)
e2(t)






.

(19)

with outputs given in (18).
The LQG controller corresponds toF = FLQG andJ =

JLQG where

F
LQG =

[

A−BLMC −BL(I −MC)
KC −BLMC A−KC −BL(I −MC)

]

,

J
LQG =

[

N −BLM
0 K −BLM

]

. (20)

The full closed-loop system is derived for the two decentral-
ized pairingsy1 −u1 andy2 −u2, andy1 −u2 andy2 −u1,
respectively. The full closed loop system for the first pairing
choicey1 − u1 andy2 − u2 is given by

X(t + 1) = diag(F LQG
11

, A
e
12, A

e
21, F

LQG
22

)X(t)

+























N11 0 [JLQG
11

]12 0

0 0 [JLQG
11

]22 0
0 N12 0 0
0 0 0 0
N21 0 0 0
0 0 0 0

0 N22 0 [JLQG
22

]12
0 0 0 [JLQG

22
]22





























w1(t)
w2(t)
e1(t)
e2(t)







(21)

[JLQG
ij ]kl is elementkl in the corresponding matrixJLQG

(defined in Equation (20)) for subsystemij.
The corresponding system for the other decentralized

pairing choice,y1 − u2 andy2 − u1, is

X(t + 1) = diag(Ae
11, F

LQG
12

, F
LQG
21

, A
e
22)X(t)

+























N11 0 0 0
0 0 0 0

0 N11 [JLQG
12

]12 0

0 0 [JLQG
12

]22 0

N11 0 0 [JLQG
21

]12
0 0 0 [JLQG

21
]22

0 N22 0 0
0 0 0 0





























w1(t)
w2(t)
e1(t)
e2(t)







(22)

with outputs given by (18).

V. CONTROL STRUCTURE SELECTION

As a measure of the performance of the considered control
structure, the sum of the output variances,tr(cov{y}), is here
used. This measure gives an indication of how appropriate
the control structure is compared to other structures, and



will here be used as a criterion when pairing the inputs and
outputs. The control structure that gives the smallest sum is
the structure that has the most desirable pairing combination
in a minimum variance sense.

The very same criterion is here used both with MV
control and with LQG control. The latter version is useful if
(CAd−1B)−1 does not exist for some subsystem, when the
system is not minimum-phase or when it is desired to have
the possibility to specify the weights in a LQG design. To
get a stable MV controller, it is required that the system is
minimum-phase. Note again, that the pairing strategy is not
limited to decentralized control structures. However, in the
present paper, only decentralized structures are compared.

The output variances were calculated in the following way:
The stationary state covariance matrixΠ = Ex(t)xT (t) =
Ex(t + 1)xT (t + 1) for a stable state space system
(A, B, C, 0) with process noise intensityλ2, was found by
solving the discrete-time Lyapunov equation [20]

Π = AΠAT + λ2BBT . (23)

The stationary output covariance matrix was then obtained
as

cov{y} = CΠCT . (24)

If the measurements of the outputs are noisy, the noise
intensities have to be added to the output variances obtained
in (24).

VI. EXAMPLES

In this section three examples are presented where the
proposed pairing strategies are used in order to decide
appropriate decentralized control structures. The suggestions
are also compared with the ones previously obtained using
some other interaction measures (see [6] and [7]).

In the examples it is assumed that the process noise is
additive on the inputs, i.e.N = B, and for this reason
that wij = wj . All noise sequences are assumed to be
white and have unit variance. Prior to the control design,
all of the considered systems were sampled with a sampling
period of 1 s. In the LQG control design the LQ weights
in the used criterion (9) were selected in two ways. First,
Q̃i = 1, i, j ∈ {1, 2}. This is a reasonable choice that has
the possibility of giving controllers with output variances
only marginally higher than with minimum variance control
(but with substantially lower variances of the control signals),
see [1]. This is confirmed in the presented examples below.
Secondly,Q̃1 = 1 and Q̃2 = 1 · 10−9. This choice corre-
sponds to LQG control that will be very close to minimum
variance control (for minimum-phase systems), but with the
advantage of not being restricted to minimum-phase systems
to get stable controllers.

A. Example 1

In the first example the interactions present in a quadruple-
tank system will be examined (see [15] for a general descrip-
tion of this process). The considered continuous-time linear

TABLE I

OUTPUT VARIANCES FORMV AND LQG CONTROL IN EXAMPLE 1. THE

PAIRING IS SPECIFIED ASi − j WHERE i IS THE OUTPUT INDEX ANDj

THE INPUT INDEX. THE CONTROLLER TYPE DENOTEDLQG1 IS

DESIGNED WITHQ̃2 = 1 AND LQG2 WITH Q̃2 = 1 · 10−9 .

Pairing Controller type var{y1} var{y2}
∑

2

i=1
var{yi}

1-1, 2-2 MV 1.0513 1.0864 2.1376

LQG1 1.0652 1.1077 2.1729

LQG2 1.0513 1.0864 2.1376

1-2, 2-1 MV 1.1011 1.1796 2.2807

LQG1 1.1026 1.1865 2.2891

LQG2 1.1011 1.1796 2.2807

minimum-phase model is given by the following state space
matrices:

A =









−0.0159 0 0.159 0
0 −0.0159 0 0.02651
0 0 −0.159 0
0 0 0 −0.02651









,

B =









0.05459 0
0 0.07279
0 0.0182
0.03639 0









,

C =

[

1 0 0 0
0 1 0 0

]

, D =

[

0 0
0 0

]

. (25)

The obtained (theoretical) output variances are given in
Table 1. Clearly, the pairing combinationu1−y1 andu2−y2

results in the smallest output variances for both of the LQG
control settings as well as the MV control. Hence, in a
minimum variance sense, this is the recommended pairing
selection. Note that, in this case the system is minimum
phase, and LQG control with̃Q2 = 1 · 10−9 results in
the same output variances as the MV control. In [6], RGA,
HIIA, PM and Σ2 are used in the study of this process.
All of these interaction measures recommend the very same
diagonal pairing for decentralized control.

B. Example 2

Now consider the continuous-time2× 2 process given by

G(s) =

[

5e−40s

100s+1

e−4s

10s+1

−5e−4s

10s+1

5e−40s

100s+1

]

. (26)

s is the Laplace variable. This process has been extensively
analyzed by [18] and [24] with the conclusion that the anti-
diagonal pairing combinationy1−u2 andy2−u1 is preferred
for decentralized control. One reason for this is that the anti-
diagonal pairing combination corresponds to faster elements
in G. [18] came to this conclusion using the Dynamic
Relative Gain Array (DRGA) and verified it in a simulation
study involving optimal decentralized PI controllers. [24]
used the Effective Relative Gain Array (ERGA) with the
same result. In [6], [7] theΣ2 was used to find the very
same pairing recommendation.



TABLE II

OUTPUT VARIANCES FORLQG CONTROL IN EXAMPLE 2. THE PAIRING

IS SPECIFIED ASi − j WHERE i IS THE OUTPUT INDEX ANDj THE INPUT

INDEX . THE CONTROLLER TYPE DENOTEDLQG1 IS DESIGNED WITH

Q̃2 = 1 AND LQG2 WITH Q̃2 = 1 · 10−9 .

Pairing Controller type var{y1} var{y2}
∑

2

i=1
var{yi}

1-1, 2-2 MV 1.1368 2.3358 3.4727

LQG1 1.1440 2.3430 3.4870

LQG2 1.1368 2.3358 3.4727

1-2, 2-1 MV 1.1707 1.9623 3.1330

LQG1 1.1736 2.0146 3.1882

LQG2 1.1707 1.9623 3.1330

The output variances for MV control and for both of the
LQG control settings indicate that the anti-diagonal pairing
combination is the most suitable since this pairing gives the
lowest output variances, see Table II. This is in contrast to
the static RGA, the HIIA and the PM, but in agreement with
for instanceΣ2, the RGA evaluated at frequencies& 10−1.7

rad/s, and with other findings made by e.g. [18] and [24].

C. Example 3

As a concluding example, consider the3×3 process given
by

G(s) =
1 − s

(1 + 5s)2





1 −4.19 −25.96
6.19 1 −25.96
1 1 1



 (27)

This process is used by [13] as an example of when the
static RGA does not recommend the most desirable pairing.
Note that the system is not minimum-phase. Hence, the MV
controllers may not be stable. This is the reason for the
difference in variance between MV control and LQG control
with Q̃2 = 1 · 10−9 in this particular example, see Table 3.

The RGA recommends the diagonal pairing combination
y1 – u1, y2 – u2 and y3 – u3. However, as found by [13]
this pairing combination is not suitable due to instability
issues. Instead, they recommend the pairing combinationy1

– u2, y2 – u3 and y3 – u1. The same pairing suggestion
is found by [11] when considering loop-by-loop interaction
energy. The HIIA, the PM andΣ2 all recommend the pairing
combinationy1 – u3, y2 – u1 andy3 – u2 for decentralized
control. The RGA also indicates (by negative elements) that
the pairing combinationy1 – u3, y2 – u1 and y3 – u2

should be avoided, see for instance [13]. If the HIIA, the
PM and Σ2 are combined with the RGA rule of avoiding
pairings corresponding to negative RGA elements (this is
one component of the pairing rule used by [11]), the HIIA,
the PM andΣ2 suggest the very same pairing combination
as the one recommended by [13] and [11].

All six decentralized pairing combinations were evaluated.
In Table III the sum of the output variances is presented
for each combination. The proposed pairing criteria are
minimized for the pairing combinationy1 – u3, y2 – u1 and
y3 – u2 for MV control and for both of the LQG control
settings. This supports the recommendation made by the

TABLE III

THE SUM OF THE OUTPUT VARIANCES FORLQG CONTROL IN EXAMPLE

3. THE PAIRING IS SPECIFIED ASi − j WHERE i IS THE OUTPUT INDEX

AND j THE INPUT INDEX. THE CONTROLLER TYPE DENOTEDLQG1 IS

DESIGNED WITHQ̃2 = 1 AND LQG2 WITH Q̃2 = 1 · 10−9 .

Pairing Controller type
∑

3

i=1
var{yi}

1-1, 2-2, 3-3 MV 75.7614

LQG1 75.7860

LQG2 75.7704

1-1, 2-3, 3-2 MV 43.6560

LQG1 50.3364

LQG2 49.8111

1-2, 2-1, 3-3 MV 73.6870

LQG1 74.5408

LQG2 74.2068

1-2, 2-3, 3-1 MV 43.0675

LQG1 50.0170

LQG2 49.3745

1-3, 2-2, 3-1 MV 43.6560

LQG1 50.3364

LQG2 49.8111

1-3, 2-1, 3-2 MV 42.1700

LQG1 49.4106

LQG2 48.6842

HIIA, the PM andΣ2. However, the pairing combinationy1

– u2, y2 – u3 andy3 – u1 also gives variances that are very
close to the variances of the suggested pairing. If the pairing
combinations corresponding to negative RGA elements are
avoided, the MV and the LQG control criteria give the very
same pairing suggestion as the one recommended by [13]
and [11]. It is further found (see Table III) that the diagonal
pairing recommended by the RGA is not desirable in a
minimum variance sense. In fact, this pairing results in the
largest output variances. There are also two other pairings
that give low output variances: pairing combinationy1 −u1,
y2−u3 andy3−u2 and pairing combinationy1−u3, y2−u2

andy3 − u1.

VII. C ONCLUSIONS

New input/output pairing strategies based on minimum
variance control and LQG control have been presented.
The obtained decentralized input-output pairing suggestions
for three MIMO plants have been compared with those
previously obtained with other interaction measures. It was
found that the proposed pairing strategies give suitable
decentralized pairing suggestions for the studied processes.
This motivates a further study of the strategies. In the
present paper only decentralized control structures have been
considered. However, this is not an inherent limitation of the
proposed pairing strategies since they are able to evaluate
the performance of other control structures as well. This is
an advantage compared to the RGA. Furthermore, since the
strategies are based on what control performance that can be
expected to be achieved with the designed control structures,
the proposed interaction measures are easy to interpret.
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