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Abstract

A perfectly matched layer (PML) for the Schrödinger equation us-
ing a modal ansatz is presented. We derive approximate error formulas
for the modeling error from the outer boundary of the PML and for the
error from the discretization and show how these can be matched in
order to obtain optimal performance of the PML. Included numerical
results show that the PML works efficiently at a prescribed accuracy
for the zero potential case, with a layer of width less than two percent
of the computational domain.

1 Introduction

Propagating waves are important in many fields of applications, such as
electromagnetism, acoustics, aerodynamics and quantum mechanics. These
types of problems are often formulated on very large or unbounded domains
and an important aspect in performing efficient numerical simulations is to
restrict the original domain to a much smaller computational domain. In
order to mimic the behavior of outgoing waves on an unbounded domain,
artificial boundary conditions need to be imposed on the boundary of the
computational domain. An important feature of this boundary is that it
should not reflect outgoing waves, that would contamine the solution of the
original problem. Such artificial boundary conditions can be divided into
two classes: non-reflecting or absorbing boundary conditions (ABC) and
absorbing layers. An ABC is posed precisely on the boundary, whereas an
absorbing layer is an extension of the computational domain where outgoing
waves are dampened. See e.g. Hagstrom [1], [2] and Givoli [3] for extensive
reviews on ABC’s.
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Here, we consider solving the time-dependent Schrödinger equation with
a member from the second class, a perfectly matched layer (PML), in or-
der to study the behavior of quantum mechanical systems without having
spurious reflections from waves traveling out of the domain. This is an im-
portant issue when studying the dynamics of a chemical reaction, e.g. when
the quantum mechanical system consists of a molecule that dissociates into
two smaller molecules. Here, the square of the absolute value of the wave
function corresponds to a probability distribution. The independent variable
is the distance between the subsystems. Hence, as the distance between the
subsystems increases, a probability wave propagates towards the far-field.

The perfectly matched layer (PML) method was developed for Maxwell’s
equations by Berenger in 1994 [4] and has been succesfully used in computa-
tional electromagnetics where it has become the standard method. The idea
of the PML method is to surround the computational domain by an artificial
damping layer of finite width, where a modified set of equations have to be
solved. Ideally, the incoming waves are damped to such an extent that the
outer boundary conditions are of no importance. Also, the interface between
the computational domain and the damping layer should not cause any re-
flections. The PML fulfils this criteria in theory, although some reflections
occur in practice due to the discretization of the problem. We will refer to
these as numerical reflections.

The aim of this work is to show how to systematically choose damp-
ing parameters and discretization parameters for optimal performance of a
Schrödinger PML. A related study for Maxwell’s equations in second order
formulation was done in [5]. We focus on spatial discretization by finite differ-
ence methods and consider orders 2 and 4. In time we use a finite difference
scheme of order 2, but the study is also relevant for more efficient time prop-
agation methods. In particular we have the Magnus-Arnoldi schemes [6] in
mind.

In comparison with ABC’s, relatively little work has been done on PMLs
for the Schrödinger equation. However, the PML approach is closely related
to absorbing boundary methods used in the quantum chemistry community,
and our results can be extended to such methods.

The disposition of the article is as follows: in section 1.1 we give an
overview of the relevant layers in the quantum chemistry community. In
section 2 the modified PML equation is derived and the relation between
smooth exterior scaling (SES) and PML is discussed. We consider numerical
approximations in section 3. Error analysis is considered in section 4, where
we derive approximate formulas for numerical errors and error caused by the
finite width of the layer. Numerical experiments are performed in section
5, verifying the error formulas derived in section 4 and showing how these
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yield optimal results. Conclusions and suggestions for future work are given
in section 6.

1.1 Damping layers in the quantum chemical commu-
nity

An important task of quantum chemistry is to be able to calculate the energy
of resonance states. A resonance state is defined as a long-lived state of a sys-
tem which has sufficient energy to break up into two or more subsystems [7].
In scattering experiments, the subsystems can for instance be an electron
which is scattered from an atom or a molecule. The resonance states are
discrete solutions of the Schrödinger equation with exponentially divergent
wavefunctions at large distances from the scattering center and are thus not
elements of a Hilbert space. There are different techniques to address this
issue in computations. One technique is complex scaling, where a coordinate
transformation, x→ F (x) = xeiθ, into the complex plane leads to square in-
tegrability of the resonance wave eigenfunctions, i.e. after the transformation
the eigenfunctions belong to the Hilbert space, while the resonance energies
remain unaffected [7]. Using complex scaling for molecular problems means
that a potential energy surface (PES), which is given as a set of ab initio
points, needs to be scaled and interpolated between the points by analytic
functions. Smooth exterior scaling (SES) is based on the theory of complex
scaling, but the coordinate transformation occurs after some x = x0, after
which the PES is assumed to be constant. Hence, by using the SES technique
the scaling of the PES can be avoided. However, the most common approach
in the quantum chemistry community is to add a complex absorbing poten-
tial (CAP) to the physical Hamiltonian right outside the domain of interest.
The main reason that the CAP’s are so popular is that they are easy to im-
plement together with psuedo-spectral methods, a diagonal complex matrix
is simply added to the Hamiltonian. However, the spectrum of the perturbed
Hamiltonian will be affected for the CAP method, causing unphysical effects.
A significant advantage for the SES and complex scaling over CAP is that
they stand on a more rigorous mathematical ground [8].

2 The Schrödinger equation with PML

We modify the Schrödinger equation in the PML following Hagstrom [2].
Consider the time-dependent Schrödinger equation in two space dimensions
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(1)

i
∂u

∂t
= −∂

2u

∂x2
+ L(y, ∂/∂y)u in Ω = [0,∞)× [−l, l], (1)

with boundary operators B1 and B2 in the y-direction

B1u(x,−l, t) = B2u(x, l, t) = 0,

and a decay condition
lim
x→∞

u(x, y, t) = 0. (2)

Here L is a linear, elliptic operator

L(y, ∂/∂y) = − ∂2

∂y2
+ V (y),

with eigenvalues κ2
j and eigenvectors ψj

Lψj = κ2
jψj j = 1, ...,∞.

We want to truncate the infinite domain in the x-direction by constructing
a PML of width d at x = x0, so that the new domain is reduced to Ω =
[0, x0 + d] × [−l, l]. Expanding u in a Fourier series in the ψj and Laplace-
transforming in time gives the equation

isûj = −∂
2ûj
∂x2

+ κ2
j ûj in Ω = [0,∞)× [−l, l],

with solutions
ûj(x) = eλ±xφj, (3)

where φj is a scalar and

λ± = ±
√
−is+ κ2

j .

We want to modify (3) so that solutions that propagate into the layer are
damped. We consider Re(s) ≥ 0 and choose the branch of the square root
so that

Re
(√
−is+ κ2

j

)
≤ 0 for Re(s) ≥ 0.

λ+ gives bounded solutions that satisfy (2) and decaying waves can be ob-
tained by modyfing the exponent in the following way

ûj(x) = e
√
−is+κ2

j (x+eiγ
R x
x0
σ(ω)dω)

, (4)
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where σ(ω) is a smooth, non-negative function in ω. γ is usually a constant
grid stretching parameter chosen as 0 < γ < π

2
in order to obtain decaying

solutions. An alternative is to let γ vary with x in the PML, i.e. γ = γ(x).
For perfect matching the solution and its derivative in the interior domain
should coincide with the modified solution and its derivative in the layer at
the interface x = x0. Thus we need to impose the additional condition

σ(x0) = 0.

Solutions of the form (4) are obtained by solving

i
∂u

∂t
= − 1

1 + eiγσ(x)

∂

∂x

1

1 + eiγσ(x)

∂u

∂x
+ L(y, ∂/∂y)u (5)

in Ω = [0, x0 + d]× [−l, l]
instead of (1). Note that if σ(x) = 0 for x ≤ x0, (5) reduces to (1) in the
interior domain. Hence, we can solve (5) both in the interior domain and in
the layer by letting σ(x) vanish in the interior.

Remark: The derivation generalizes to more space dimensions.

2.1 Relation between PML and smooth exterior scal-
ing

The idea of smooth exterior scaling is the same as for the PML, that outgoing
waves are dampened as they travel out of the computational domain by
gradually increasing some absorption parameter towards the outer boundary.
One way of viewing the PML method is as a complex coordinate stretch,
where the real coordinate x is replaced by a complex coordinate F (x) in the
layer. This was first done by Chew and Weedon [9], and in this setting it
becomes clear that the PML and SES approaches are in fact equivalent, only
written on different forms. Considering

F (x) = x+ eiγ
∫ x

x0

σ(ω)dω

as a continuation of the real coordinate x into the complex plane in the layer
leads to equation (6)

i
∂u

∂t
= − ∂

2u

∂F 2
+ L(y, ∂/∂y)u = − 1

f(x)

∂

∂x

1

f(x)

∂u

∂x
+ L(y, ∂/∂y)u, (6)

where
dF (x)

dx
= f(x) = 1 + eiγσ(x),
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and thus (6) is the same equation as (5). In SES the ansatz u(x, t) =
k(x)ϕ(x, t) (6) is made, which for the new wave function ϕ(x, t) leads to
the equation

i
∂ϕ

∂t
= − 1

f(x)

∂2

∂x2

1

f(x)
ϕ+ Vk(x)ϕ+ L(y, ∂/∂y)ϕ, (7)

with a complex symmetric operator on the right hand side. Here Vk(x) =
(3f ′(x)2−2f ′′(x)f(x))/4f(x)4 and k(x) is chosen as k(x) = 1√

f(x)
in order to

eliminate the first derivatives in ϕ(x) that appear from inserting the ansatz
into (6). Using this complex symmetric expression (7) for the space dis-
cretization could be advantageous since theorems and proofs for hermitian
matrices can be transferred to complex symmetric matrices by using a so
called c-product [7]. Another reason is that it gives a larger basis of option
when choosing methods for time-propagation. For example, Lanczos itera-
tion for complex symmetric matrices could be used, although this method
has been known to suffer from numerical instabilities [10].

3 Numerical approximations

We solve the Schrödinger equation using two finite difference schemes of
Crank-Nicolson type, they are second order accurate in time and second and
fourth order accurate in space, respectively. The second order method is

i
un+1
j − unj

∆t
=

vj
∆x2

[
vj+1/2

(
un+1
j+1 + unj+1

2
−
un+1
j + unj

2

)

−vj−1/2

(
un+1
j + unj

2
−
un+1
j−1 + unj−1

2

)]
, (8)

unj is the grid function with space index j and time index n. vj+1/2 are
calculated as mean values of the analytical function v(x) (9) between the
two grid points j and j + 1, where

v(x) =
1

1 + eiγσ(x)
. (9)

The Crank-Nicolson scheme without PML,

i
un+1
j − unj

∆t
=

1

∆x2

(
un+1
j+1 − 2un+1

j + un+1
j−1

2
+
unj+1 − 2unj + unj−1

2

)
, (10)
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is unconditionally stable, hence the time step should only be restricted due
to accuracy requirements. Energy estimates for the continuous PML equa-
tion with constant coefficients and Dirichlet or periodic boundary conditions
yields the following restriction on γ for well-posedness,

0 < γ <
π

2
. (11)

Hence, (8) will with that choice of γ be stable for any constant absorption
function σ ≥ 0. Numerical experiments suggest that the same is true also
for the variable coefficient case.

Inserting an exact solution u(x, t) into the semi-discrete equation,

i
∂uj
∂t

= − vj
∆x2

[
vj+1/2 (uj+1 − uj) −vj−1/2 (uj − uj−1)

]
≡ D2uj, (12)

where uj(t) is the numerical semi-discrete solution, yields a truncation error
where the largest term

Tε2 = −∆x2v
(vuxxxx

12
+
vxuxxx

6
+
vxxuxx

8
+
vxxxux

24

)
, (13)

is of second order. The fourth order in space, second order i time-scheme
(16) is obtained by first combining (9) and the right hand side of (5) and
expanding, see (14), and then discretizing using central finite differences of
fourth order, see (15).

−v(x)
∂

∂x

(
v(x)

∂u

∂x

)
= −v(x)2∂

2u

∂x2
− v(x)

∂v

∂x

∂u

∂x
, (14)

i
∂uj
∂t

= −
v2
j

12∆x2
[−uj+2 + 16uj+1 − 30uj + 16uj−1 − uj−2]

−vjvx,j
12∆x

[−uj+2 + 8uj+1 − 8uj−1 + uj−2] ≡ D4uj. (15)

Here vj and vx,j are the exact function values of v(x) and vx(x), respectively,
in grid point j. The fourth order in space, second order in time-scheme (16)
is

i
un+1
j − unj

∆t
= D4(

un+1
j + unj

2
). (16)

The stability properties of (8) and (16) are good. A drawback is that the
Crank Nicolson method is an implicit method and a system of equations
needs to be solved in each time step.
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Remark: We can add terms to increase the order in space additionally,
but since the scheme is only second order in time a higher order in space
discretization will force us to take very small time steps to retain a high
accuracy. However, this can be done if another method is used for time-
propagation. It is also useful when expanding into higher dimensions in
space.

4 Error analysis

There are three types of errors which affect the solution of the discretized
problem on the truncated domain; the error that comes from solving the
continuous Schrödinger equation on a truncated domain with a PML of finite
width, ε1, the error that comes from discretizing the modified equation (5)
in the PML, ε2, and the discretization error from the interior domain, ε0. ε1

is referred to as the modeling error, ε2 as the numerical reflections and ε0 as
the discretization error.

For optimal performance we want to match the modeling error, ε1, with
the numerical reflections, ε2, so that neither of the errors dominate, but are
of the same order. Moreover, the error level should be determined by the
discretization error from the interior, ε0, so that ε1 and ε2 are of the same
order as ε0.

4.1 Modeling error

In this section we consider ε1. ε2 is considered in section 4.2 and ε0 in section
4.3. We start with the solutions to the Laplace-transformed versions of (1)
and (5), respectively,

û(x) = Ae−
√
−is+κ2

jx +Be
√
−is+κ2

jx,

ûPML(x) = APMLe
−
√
−is+κ2

j (x+eiγ
R x0+d
x0

σ(ω)dω)
+BPMLe

√
−is+κ2

j (x+eiγ
R x0+d
x0

σ(ω)dω)
,

consisting of one wave propagating to the left and one propagating to the
right. Imposing a Dirichlet boundary condition at the outer boundary of the
layer, x = x0 + d, gives

ûPML(x0 + d) = 0⇒ BPML = −APMLe
−2
√
−is+κ2

j (x0+d+eiγ
R x0+d
x0

σ(ω)dω)
.

By matching solutions to (1) and (5) and their derivatives at x = x0, an
expression for the modeling error, the ratio between the incoming (left-
propagating) and outgoing (right-propagating) wave in the interior domain,
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can be derived.

ε1 =
|APML|
|BPML|

= e2δ, δ = Re
(
λ+

(
x0 + d+ eiγ

∫ x0+d

x0
σ(ω)dω

))
, (17)

λ+ =
√
−is+ κ2

j .

We see that the modeling error depends on the width of the PML, the size
of the integral of σ(x) and on the specific problem in terms of κ2

j and s.
However, it is independent of the shape of σ(x).

In order to derive approximate expressions for the modeling error, ε1, and
later for the numerical reflections from the PML, ε2, we need to determine
the dominating frequencies of the incoming wavepacket. Consider the model
problem (18) where L(y, ∂/∂y) from (1) is zero:

i
∂u

∂t
= −∂

2u

∂x2
(18)

u(x, 0) = e−x
2+ikx,

so that k is the speed of the incoming wave packet. Laplace-transformation
in time gives

isû = −∂
2û

∂x2
+ ie−x

2+ikx.

Fourier-transformation in x gives

isû = −(iω)2û+ i
√
πe−(ω−k)2/4,

and we get the Laplace- and Fourier-transformed solution û

û =
i
√
π

is− ω2
e−(ω−k)2/4, (19)

where û is exponentially decaying and attains large values when ω ≈ k, and
when is ≈ ω2. Hence, s ≈ k2/i = −ik2 gives large values of û.

Remembering that Re(s) ≥ 0, we insert s = −ik2 +α1 into λ+ =
√
−is+ κ2

j

with κj = 0 and α1 > 0, α1 << k. Due to the choice of branch for the square
root this yields

λ+ = +
√
−i(−ik2 + α1) = ik +O(

α1

k
), (20)

with Re(λ+) < 0. Using a polynomial of degree p as absorption function
yields the integral∫ x0+d

x0

σ(ω)dω =

∫ x0+d

x0

σmax

(
ω − x0

d

)p
=

[
σmax

(ω − x0)(p+1)

(p+ 1)dp

]x0+d

x0

= σmax
d

p+ 1
.(21)
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Inserting (20) and (21) into (17) yields

ε1 ≈ e
−2k sin(γ)σmaxd

p+1 . (22)

Here we used the approximation λ+ ≈ ik. The modeling error should ac-
cording to (22) decrease exponentially as the wave number, k, the width of
the PML, d, and the strength of the absorption, σmax, increase. Note that
by letting σmax depend on the degree of the polynomial, p, the value of the
integral can be kept constant independently of p. The expression (22) is
validated numerically in section 5.

Consider a rightgoing wave,

û(x) ≈ e
ik(x+eiγ

R x
x0
σ(ω)dω)

. (23)

With λ+ = ik2 − α2, we have

û(x) ≈ e(ik2−α2)(x+Σa+iΣb) = eik2(x+Σa)−iα2Σbe−k2Σb−α2(x+Σa), (24)

where eiγ
∫ x
x0
σ(ω)dω = Σa + iΣb. Here Σa and Σb are real and positive.

Note that Σa corresponds to a real grid stretch, whereas Σb corresponds
to a continuation of x into the complex plane. The Schrödinger equation is
dispersive in nature and both Σa and Σb will contribute to the dampening of
the wavepacket, although in general most of the dampening stems from Σb.

An alternative to the standard constant grid stretch parameter γ is to use
γ = γ(x). For instance, letting γ start near π/2 and gradually decrease will
gradually increase the real grid stretch in the PML, i.e. the discretization in
the PML will be coarser further into the PML. Since the wavepacket is much
smaller further into the PML, to gradually coarsening the grid in the PML
would likely not contribute to an increase in the total error, even though the
resolution there is decreased. Hence, less points can be used in the PML
without losing accuracy. This is not investigated further here, instead a
constant value of γ = π/4 is used, if nothing else is stated.

4.2 Numerical reflections from the PML

Discretizing the continuous PML equation (5) introduces numerical reflec-
tions, ε2, which depend on the truncation error inside the PML. The trun-
cation error for the second order scheme (8) is

Tε2 = −∆x2v
(vuxxxx

12
+
vxuxxx

6
+
vxxuxx

8
+
vxxxux

24

)
.

Inserting the semi-discrete, Laplace-transformed solution (23) together with
(9) into the expression above yields an approximation of the truncation error
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expressed in terms of σ̃(x) = eiγσ(x), derivatives of σ̃(x), wave number k
and Laplace-transformed solution ûj(x),

Tε2,j = −∆x2 1

1 + σ̃j

[
− 5

24
k2σ̃′′j +

1

24

1

(1 + σ̃j)
ikσ̃′′′j −

1

24

1

(1 + σ̃j)2
ikσ̃′jσ̃

′′
j

−1

3
(1 + σ̃j)ik

3σ̃′j +
1

12
(1 + σ̃j)

3k4

]
ûj +O(∆x4).

(25)

Here, we have used the approximation λ+ ≈ ik. The discretization error in
grid point j, i.e. the difference between an exact solution and a semi-discrete
solution that fulfils (8) in that grid point, is denoted ε2,j and fulfils

i
∂ε2,j

∂t
= D2ε2,j + Tε2,j, (26)

i.e. the truncation error is transported with the error equation (26). Evalua-
tion of the terms in (25) shows that the fourth term on the right hand side is
the largest in the PML, indicating that the numerical reflections in the PML
behave like

Tε2,j ∝ σ̃′∆x2ûj, (27)

or by letting σ(x) be a polynomial of degree p according to (21),

Tε2,j ∝
σmax
dp

∆x2ûj. (28)

From (28) we expect the l2-norm of the numerical reflections to behave like

ε2 = C2(k)
σmax
dp

∆x2. (29)

The behavior of the expression (29) with respect to σmax, d, p and ∆x is
verified by numerical experiments in section 5. In section 5 we also see that
ε2 decreases with increasing k.

4.3 Discretization error from the interior

For the scheme in the interior, where σ̃ = 0, all terms but the fourth one in
(25) will vanish, and the truncation error in the interior is approximately

Tε0,j ≈ −
∆x2k4

12
ûj. (30)

11



For a plane wave with spatial frequency k, the pointwise error in the interior
at time T , ε0,j = |u(xj, T )− uj(T )|, is for the second order scheme at most

max
j
ε0,j =

∆x2k4

12
T +O(∆x4), (31)

see [11], p.93.
Since the solution to the model problem (18) consists of many different

frequencies, we cannot use this error bound in a strict sense here. However,
we expect the l2-norm of the discretization error from the interior domain to
behave like

ε0 ≈ C
∆x2k4

12
T. (32)

Numerical tests presented in section 5 show that (32) gives a good estima-
tion of the l2-norm of the discretization error from the interior and that the
proportionality constant C ≈ 1. This is not surprising since the l2-norm of
the solution is of order unity.

4.4 Matching of errors

Making the requirement that the numerical reflections, ε2, should not amount
to more than ten percent the discretization error from the interior, ε0, yields

C2(k)
σmax
dp

∆x2 ≤ 0.1C0(k, T )∆x2.

We define M as
M =

σmax
dp

, (33)

which gives
C2(k)M∆x2 ≤ 0.1C0(k, T )∆x2. (34)

The constants C2(k) and C0(k, T ) can be determined numerically and we get
the largest possible value of M from (34)

M =
0.1C0(k, T )

C2(k)
. (35)

At the same time, we require that the modeling error from the PML, ε1,
should not exceed ten percent of ε0, i.e.

e
−2k sin(γ)σmaxd

p+1 ≤ 0.1C0(k, T )∆x2.

Inserting (33) yields

−2k sin(γ)Mdp+1

p+ 1
≤ ln(0.1C0(k, T )∆x2), (36)

12



and the smallest possible value of d can be determined from (36) as

d = p+1

√
−ln(0.1C0(k, T )∆x2)(p+ 1)

2k sin(γ)M
. (37)

Finally, the corresponding σmax is determined from (33),

σmax = Mdp. (38)

5 Numerical experiments

Numerical experiments for the zero potential case are performed in 1D and we
verify that the behavior of the modeling error agrees with theory. We show
that the discretization error from the interior goes to zero at the expected
rate as the mesh is refined for the second and fourth order in space schemes,
(8) and (16). Also, we investigate how the numerical reflections from the
PML depend on the PML parameters and how to choose PML parameters
so that the different types of errors are matched. An interesting observation
is that when the PML is sufficiently wide and the absorption function is
smooth, the numerical reflections from the PML is often the least significant
error as the wave packet is sufficiently resolved. For those grids, coarser grids
actually perform slightly better, which likely is due to that finer grids succeed
in transporting the error more efficiently.

We solve the model problem (18), which has the exact solution

uexact(x, t) =

√
i

−4t+ i
e
−ix2−kx+kt2

−4t+i .

The numerical solution uPML is compared to the exact solution, uexact, and to
a reference solution, uref , calculated on the same grid as uPML but without
PML and on a larger domain, so that the discretization error from the PML
can be distinguished from the discretization error of the interior scheme. The
l2-error with respect to the exact solution is calculated at time T as

||uPML(·, T )− uexact(·, T )||2
||uexact(·, 0)||2

,

where ||u(·, t)||2 =
√

∆x
∑

i |u(xi, t)|2. The sums are taken only over points
in the interior domain. As absorption functions we use polynomials of degree
p, on the form σ(x) = σmax

(
x−x0

d

)p
, with p ≥ 4.
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5.1 Modeling error

We expect the modeling error, ε1, to decrease exponentially with respect to
wave number k, the strength of the absorption function σmax, and the width
of the PML d, see (22). Using (8) with ∆x = 1 · 10−3, ∆t = 1 · 10−4 on
the domain x = [−5, 7], where the PML starts at x0 = 5, this behavior is
verified and displayed in figure 1. We also see from figure 1 and tables 1 - 3
that the calculated modeling error agrees with the measured. An eigth order
polynomial is used as absorption function with relatively low values of σmax
to ensure that the numerical reflections are small and the modeling error
dominating. σmax, k and d are varied as stated in tables 1 - 3, elsewhere we
have σmax = 1.5, k = 10, d = 2 and γ = π/4.

(a) σmax (b) k

(c) d

Figure 1: Modeling error as a function of σmax, k and d
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σmax ε1 (measured) ε1 (predicted)
0.75 1.0011e-01 9.4702e-02

1 4.7645e-02 4.3166e-02
1.25 2.2957e-02 1.9676e-02
1.5 1.1120e-02 8.9682e-03
1.75 5.5310e-03 4.0879e-03

2 2.7657e-03 1.8633e-03

Table 1: Modeling error with varying σmax

k ε1 (measured) ε1 (predicted)
8 2.8572e-02 2.3024e-02
9 1.7938e-02 1.4370e-02
10 1.1120e-02 8.9682e-03
11 6.9895e-03 5.5974e-03
12 4.3621e-03 3.4935e-03
13 2.7224e-03 2.1804e-03
14 1.6990e-03 1.3608e-03

Table 2: Modeling error with varying k

d ε1 (measured) ε1 (predicted)
1 1.0011e-01 9.4702e-02

1.5 3.3021e-02 2.9143e-02
2 1.11199e-02 8.9682e-03

2.5 3.9046e-03 2.7599e-03
3 1.3972e-04 8.4933e-04

Table 3: Modeling error with varying d

We conclude that the behavior of the modeling error is in agreement with
the theory in section 4.1 and that (22) gives a good estimate of the modeling
error.

5.2 Numerical reflections

We expect the numerical reflections from the PML to depend on the step
size ∆x, the wave number k, the maximum value of σ(x), σmax, as well as
the shape of σ(x). It should also depend on the width of the PML, d, as
d−p, where p is the order of the polynomial used. The discretization error
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from the PML is transported to the interior domain, but also damped on the
way by the PML. We expect the truncation error in the PML for the second
order scheme to behave like

Tε2,j ∝
σmax
dp

∆x2ûj.

The numerical reflections from the PML come from reflections from the in-
terface as the wave packet propagates into the PML, as well as reflections
inside the PML, that come from increasing the absorption function. For a
constant shape of the absorption function, we investigate the behavior of the
numerical reflections with respect to ∆x and σmax. We use a wide PML with
d = 4 to ensure that the modeling error is kept small and the numerical
reflections from the interface of the PML is dominating.

We vary the grid size of the discretization as well as σmax to investigate
the behavior of the numerical reflections from the PML using (8). First, we
keep the grid fixed with ∆x = 3.2·10−2 and we use ∆t = 10−4 and a 4th order
polynomial. Other constants are k = 10, d = 4, γ = π/4. In table 4 and
5 we see how the numerical reflections vary with σmax and ∆x, respectively.
The linear and quadratic behaviors, respectively, are displayed in figure 2.

(a) σmax (b) log(∆x)

Figure 2: Numerical reflections ε2 as a function of σmax and log(∆x)
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σmax ε2 (measured)
3 2.3724e-08
4 3.1632e-08
5 3.9538e-08
6 4.7444e-08
7 5.5350e-08
8 6.3255e-08
9 7.1160e-08
10 7.9065e-08

Table 4: Numerical reflections with varying σmax

∆x ε2 (measured) ε0 (measured) ε0 (predicted)
3.2e-02 7.9065e-08 1.8241e-01 1.7237e-01
1.6e-02 1.9766e-08 4.5532e-02 4.3093e-02
8e-03 4.9414e-09 1.1510e-02 1.0773e-02
4e-03 1.2353e-09 3.0251e-03 2.6933e-03
2e-03 3.0876e-10 9.0634e-04 6.7333e-04
1e-03 7.7281e-11 3.7771e-04 1.6833e-04

Table 5: Numerical reflections with varying ∆x

In figure 3 and table 6, we see how ε2 depends of the width, d. Here we
use ∆x = 8 · 10−3, ∆t = 10−4, σmax = 10, p = 4 and vary d. The slope in
figure 3 is determined to −4.02, clearly showing a d−p-behavior as expected.

(a)

Figure 3: Numerical reflections as a function of log(d)
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d ε2 (measured)
2.8 2.0798e-08
3.0 1.5635e-08
3.2 1.2056e-08
3.4 9.4626e-09
3.6 7.5306e-09
3.8 6.0665e-09
4.0 4.9414e-09

Table 6: Numerical reflections with varying d

In table 7, ∆x = 8 · 10−3 is kept and k is varied. We have d = 4, σmax =
10, ∆t = 10−4 and γ = π/4. The numerical reflections from the interface
decrease as k increases, which is not what we would expect by looking at
the truncation error (13). However, as we have seen the performance of the
PML increases vastly for higher frequencies and this is likely an effect of that.
For comparison we have included values of the interior discretization error
obtained from (32) and by direct measurement from numerical experiments
in the same table. We see that the measured interior discretization errors
agree with the predicted values.

k ε2 (measured) ε0 (measured) ε0 (predicted)
8 7.9900e-09 5.9853e-03 5.3084e-03
9 6.1823e-09 8.4365e-03 7.6982e-03
10 4.9414e-09 1.1510e-02 1.0773e-02
11 4.0448e-09 1.5281e-02 1.4523e-02
12 3.3745e-09 1.9828e-02 1.9021e-02
13 2.8596e-09 2.5232e-02 2.4372e-02
14 2.4550e-09 3.1581e-02 3.0732e-02

Table 7: Discretization error with varying k

In figure 4 we see the l2-error in the interior as a function of time, for
(8) in (a) and (b) and for (16) in (c) and (d), where (b) and (d) are close
ups displaying parts of (a) and (c), respectively. The wave enters the PML
shortly before t = 0.2 and after t = 0.7 the modeling error appears. We see
in (a) that the modeling error for the finest discretization is of the same size
as the modeling error for all discretizations in (c), but for coarser grids this
error is smaller. This is likely due to that for coarser grids information is
lost when the wave propagates. Here we have used parameter values k = 10,
p = 8, σmax = 9/4, γ = π/4, ∆x = 1 · 10−2, 2 · 10−2, 4 · 10−2 and ∆t = 10−5.
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The numerical reflections from the interface is converging to zero for the
2nd order discretization, while the numerical reflections for the 4th order
discretization is already on the order of roundoff, as we see in figures 4. The
error from the interior scheme (where σ(x) = 0) converges with 2nd and 4th
order respectively, see figure 5.
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(b) 2nd order (zoom)

(c) 4th order (d) 4th order (zoom)

Figure 4: l2-error as a function of time
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(a)

Figure 5: grid convergence of 2nd and 4th order schemes

Worth to note is that for well resolved wave packets the discretization
error from the interior is dominating compared to the numerical reflections
from the interface of the PML.

5.3 Matching of errors

We want to match the errors so that they are of the same order, where the
magnitude is determined from the magnitude of the discretization error from
the interior scheme, ε0. Increasing σmax makes the modeling error decrease,
while the numerical reflections increase. An alternative way of decreasing
the modeling error is to increase d, and this also decreases the numerical
reflections from the PML. We match d and σmax following the procedure
described in section 4.4, so that a minimal number of points can be used in
the PML for a given wanted accuracy.

We measure the discretization error from the interior and use it as error
level. C2(k) is determined to be C2(10) ≈ 4.9 · 10−4 for p = 4. We continue
by determining M from (35), d from (37) and σmax from (38). The results
from using the optimized values are displayed in table 8.

When we cannot choose the exact width due to the grid size, we choose to
use one extra gridpoint. This gives much better result. The total measured
error from the PML, denoted εm, and the relation beween εm and ε0 is also
presented in table 8. We have prescribed that the total error from the PML
should be 20 percent or less, and we see that we get a slightly larger error
from the PML than that. However, it never exceeds 30 percent of the interior
error. Also, note that the width can be kept almost constant and the error
is still reduced by increasing σmax. The width d here amounts to less than 2
percent of the total domain.

20



∆x ε0 (measured) d σmax εm (measured) %ε0

3.2e-02 1.8246e-01 0.192 12.25 2.3910e-2 13.10
1.6e-02 4.5533e-02 0.192 12.23 8.7667e-3 19.27
8e-03 1.1509e-02 0.192 12.37 3.2230e-03 28.00
4e-03 3.0248e-03 0.196 14.12 8.7576e-04 28.95
2e-03 9.0628e-04 0.196 16.92 2.0179e-04 22.27
1e-03 3.7770e-04 0.180 20.07 1.0079e-04 26.69

Table 8: Matching errors with varying ∆x

6 Conclusions and future work

Our approximate error formulas describe qualitative behavior of the error
with respect to strength of damping, thickness of the layer and grid size,
which enables optimization of the PML. Numerical experiments show that
by using our formulas it is possible to match the numerical reflections and
the modeling error of the PML, so that the layer performs with a prescribed
accuracy, as seen in table 8. Lowering the error tolerance calls for increased
strength in the absorption parameter, but the width of the layer can be kept
the same, here constituting of less than 2 percent of the computational do-
main. In the future, we plan to investigate the performance of our optimized
PML in 2D and also for more realistic problems. We plan to expand the
error analysis of the discretization error in the PML to higher order finite
difference schemes, since higher order schemes are necessary in order to be
able to tackle more realistic problems in quantum chemistry.
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