
Stage-parallel preconditioners for implicit Runge-Kutta
methods of arbitrary high order. Linear problems

Owe Axelsson1, Ivo Dravins1, and Maya Neytcheva1

1Department of Information Technology, Uppsala University, Uppsala,
Sweden

Keywords: Implicit Runge-Kutta methods, Radau quadrature, fully stage-parallel pre-
conditioning

Abstract

Fully implicit Runge-Kutta methods offer the possibility to use high order accu-
rate time discretization to match space discretization accuracy, an issue of significant
importance for many large scale problems of current interest, where we may have fine
space resolution with many millions of spatial degrees of freedom and long time inter-
vals. In this work we consider strongly A-stable implicit Runge-Kutta methods of ar-
bitrary order of accuracy, based on Radau quadratures. For the arising large algebraic
systems we introduce an efficient preconditioner, that allows for fully stage-parallel
solution. We analyse the spectrum of the corresponding preconditioned system and
illustrate the performance of the solution method with numerical experiments using
MPI. In this work we consider only linear problems.

1 Introduction

The availability of substantial computational power and high performance computing
(HPC) resources has enabled high resolution, both in space and time, when perform-
ing numerical simulations of numerous problems of interest, modeling processes in physics,
computational biology, financial and social processes, to name a few application areas.

Combining the requirements to have a fine, sometimes very fine, space resolution, high
enough time resolution to balance the discretization error in space and time, fast and
robust numerical simulations tilt the scales in favor of space discretization methods that
easily handle complex geometries and adaptivity, together with higher order implicit time
discretization methods. In this study we assume that the space discretization is done
applying suitable finite element methods (FEM) and focus on a particular class of implicit

1

time discretization schemes, namely, the implicit Runge-Kutta (IRK) methods, based on
Radau quadratures. To be specific, consider a system of evolutionary equations of the form

M
∂u(t)

∂t
+Ku(t) = f(t), (1.1)

arising after semidiscretization in space of some non-stationary partial differential equation,
say the heat equation ∂u

∂t
= ∆u + f(t), equipped with appropriate initial and boundary

conditions. In (1.1), M is a mass matrix, K is a stiffness matrix and u(t), f(t) are vectors.
Evolution equations are by nature sequential. When solving evolution equations, stan-

dard time-stepping methods can be very costly and time-consuming. As is well known,
when we use an explicit time-stepping method, to get a numerically stable solution, the
time-step must be chosen sufficiently small and for ill-conditioned problems it must often
be chosen unfeasibly small. Moreover, for strongly ill-conditioned problems, such methods
may not even converge. In addition, even for the explicit methods, one must solve systems
with the matrixM at each time-step. For the implicit methods, such as the backward Euler
and trapezoidal methods one must solve systems with M + τK, or similar, where τ is the
time-step. In this study we exclude from consideration the explicit time-step methods.

When we use a stable implicit time-integrator such as the backward Euler, the trape-
zoidal method or the Crank-Nicholson method (cf. [1]), the time-step must still be small
to guarantee a sufficiently small time-integration error that balances a small space dis-
cretization error. Therefore, there are strong reasons to use higher order time-integration
methods, which can enable the usage of much fewer time-steps and combine small total
discretization error with fast integration in time.

As is also well known, see e.g [2], classical multistep methods can not have a higher order
than two, otherwise they are not stable for all eigenvalues of the evolution operatorM−1K
with eigenvalues in the whole right half complex plane, that is, they are not A-stable.
This can be a severe limitation because in many problems, such as network problems and
time-harmonic Maxwell’s equations there can appear rapidly changing oscillations, leading
to the appearance of such widespread eigenvalues. On the other hand, in [3] see also [4],
it is proven that there exist implicit Runge-Kutta methods of an arbitrary high order that
are A-stable.

Implicit Runge-Kutta methods are first presented in [5], giving the methods the name
’IRK’. Independently, in [6] such methods are presented and it is shown that due to their
high order of approximation and stability properties, they could be considered as global
integration methods, that is, it could suffice to use just one or very few time-steps, that
is, very large time-step intervals. In these original papers the A-stability property of the
methods is not shown, but it is shown later in [7, 3].

There are several versions of IRK methods (see, e.g., [8, 9, 10, 11]). The most familiar
methods are based on inner interval integration points being the zeros of some particular
polynomials, namely,

(G) Pq(x), the Gauss integration method,

(R) Pq(x)− Pq−1(x), the Radau or Gauss-Radau integration method,

2

(L) Pq(x)− Pq−2(x), the Lobatto or Gauss-Lobatto integration method.

Here {Pq} denotes the set of Legendre polynomials of degree q, normalized at unity and
transformed to the unit interval [0, 1]. We recall that all zeros of the Legendre polynomials
are distinct. Further, as the polynomials are normalized at unity, x = 1 is a zero for
the Radau and Lobatto methods. For the Lobatto method x = 0 is a zero too. More to
mention, the approximation order (p) at the endpoints of each time-interval of methods
(G), (R) and (L) is correspondingly p = 2q, 2q − 1 and 2q − 2. The approximation order
at the interior integration points, however, is only of order q [5]. We stress, that the IRK
methods are particularly important for large time intervals where we are somewhat less
interested in the intermediate states of the solution but rather mainly in the final state of
the underlying evolution systems.

The definition of the Legendre polynomials of degree q in the interval [−1, 1] reads

Lq(x) =
1

2qq!

dq

dxq
(x2 − 1)q. (1.2)

The polynomials satisfy the property
1∫

−1

Lp(x)Lq(x) dx = δpq. Formula (1.2) is recursive

and is equivalent to

Lq(x) =

q∑
k=0

(
q
k

)(
q + k
k

)
(−x)q+k. (1.3)

All methods (G), (R), (L) are A-stable, cf. e.g. [12]. Methods (G) and (L) are not
strongly A-stable because for them the absolute value of the stability function converges
to unity, implying, in the presence of large eigenvalues of K or the Jacobian matrix, at
least a linear growth of rounding errors with increasing number of repeated time steps. In
this work we advocate the Radau method which is the only strongly A-stable (also called
strongly L-stable [13]) method, which means that the corresponding recursion stability
factor converges to zero when the absolute values of the eigenvalues converge to infinity.
Furthermore, the Radau method does not suffer from order reduction, that can occur for
instance in the solution of systems of differential-algebraic equations, see e.g., [14, 15].

The high accuracy of the IRK methods makes them very attractive, in particular, in
the case when the underlying problem requires a very fine space resolution and the time
interval to integrate over is large. Then IRK allow to use large time steps and still balance
the small space discretization error. Despite of that, the drawback with IRK is that in
each timestep we have to solve the arising large algebraic system of order qn× qn, where
q is the stage order of the method, that is, equals the degree and number of zeros of the
Legendre or the combination of Legendre polynomials and n is the size of M and K. For
general IRK methods all stages are coupled and cannot be decomposed in some easier to
handle form. The solution of this system can be costly and somewhat involved, which has
been the major reason why IRK methods are more rarely used. In practice, the system
must be solved by some preconditioned iterative method. Preferably, it should be possible
to implement the method efficiently in a parallel computer environment.

3

We note, that aiming at avoiding the complications involved when applying implicit
time-integration methods, there have been efforts in applying Richardson extrapolation and
similar techniques in combination with explicit Runge-Kutta methods. The extrapolation
still enables extension of the stability region, see, e.g. [16] and [17]. However, in addition
to be forced to choose time-steps to make a stable recursion, the methods do not have the
high order of discretization error, inherent in the IRK methods, see for instance, [9].

For an earlier discussion of solution techniques for IRK methods, see [18, 19], also [20]
and [21], where diagonally implicit Runge-Kutta (DIRK) methods are presented. DIRK
methods allow parallel implementation but have a much lower order of approximation, com-
pared with the full IRK methods and, therefore, force the use of smaller time-steps. Since
some time an alternative approach to solve time-dependent partial differential equations
have been used, see, e.g., [22, 23, 24], based on combined time-space finite elements. This
means that a 2D space partial differential operator is solved in a 3D space-time domain and
a 3D space partial differential operator is solved in a 4D space-time finite element mesh.
Clearly this complicates the implementation of the method, but such methods enable the
use of adaptive mesh resolution methods in both time and space.

As stated above, in this paper we consider the solution of time-dependent partial diffe-
rential equations. To discretize we apply finite elements only for the space domain. To do
this, there are many different approaches, also various mesh refinement techniques can be
used. Since the time interval is assumed to be quite large, the total number of degrees of
freedom is expected not to be larger than for an adaptively constructed time-space mesh.

Nonlinear problems (although left out of the scope of the current paper) can be solved
via some Newton iteration process, combined with a hierarchical mesh refinement process,
that is a two-level or multilevel mesh method, see [25, 26, 27]. The hierarchical meshes
are then used for the discretization of the space operator or for the combined time-space
mesh. The idea is then to solve the nonlinear problem on each time-step by utilizing a
coarse space mesh, where it is much cheaper to perform nonlinear iterations. The solution
on the previous coarse mesh is interpolated to the next finer mesh and used as an initial
approximation. Based on the norm of the local residuals it is then decided where the mesh
must be locally refined. Since there are in general few additional mesh points, only few
Newton nonlinear steps can be expected on each new mesh. This is easily understood
since for a differentiable Jacobian matrix, the error arising from the Newton linearization
is of second order, so even if we involve a coarse mesh discretization error, the iteration
error will be of the same order as the fine mesh discretization error. Hence, it may even
suffice to use just one Newton iteration step. The method is recursively repeated, intended
to be the topic of a separate paper. Usage of adaptively constructed refined meshes has
previously been applied in [28, 29]. The approach has been successfully applied also for
non-differentiable Jacobians in the context of state-constrained optimal control problems,
see [30].

Construction of efficient and well-parallelisable preconditioning methods for full IRK
is the major topic of this paper. We use the result from [6] and [31] and analyse and
implement in parallel methods which allow for full stage parallelism, that is, one can solve
the arising q systems independently utilising q parallel processes or groups of processes.

4

The paper is structured as follows. In Section 2 we present the Radau type of IRK
methods and various techniques to solve the arising block matrix linear system. Section
3 presents some versions of preconditioning methods which enable solving the full system
efficiently and rapidly with parallelizable methods by use of proper iterative acceleration
techniques. Section 4 contains some numerical experiments. Conclusions and outlook are
given in Section 5. Apendix A contains details, related to the explicit form of the IRK
matrices and Appendix B shows the algorithm to compute the eigenvectors of a triangular
matrix. In Appendix C we briefly recollect some relevant characteristics of the Generalized
Locally Toeplitz theory, used in analysing the spectrum of the preconditioned matrices.
Appendix D provides additional insight on the spectrum of the preconditioned matrices
for IRK with varying number of stages.

2 Implicit Runge-Kutta methods of Radau type

Time-integration methods are repeated on each time-step, whereby the end solution of the
previous step is used as the initial solution for the next time interval.

Therefore, we do not use overlapping time-steps but instead advocate to utilize high
order methods and very long time steps. To describe the method it suffices to consider
just a single time-integration interval, (0, τ), τ > 0, without any overlap.

In the subsequent derivations Im denotes the identity matrix of order m. We utilize
also the following tensor algebra identity with ⊗ being the matrix tensor product

(a⊗ b)(c⊗ d) = (ac)⊗ (bd). (2.1)

2.1 Discrete tensor product matrix forms

To be specific, consider the differential equation (1.1), that is,

M
du(t)

dt
+Ku(t) = f(t), 0 < t ≤ τ, u(0) = u0.

This can be written

Mv(t) +K

∫ t

0

v(s)ds = f(t)−Ku0, (2.2)

where v(t) = du(t)
dt

, that is, u(t) =
∫ t

0
v(s)ds+ u0.

Following [3], to solve (2.2) we use Radau quadrature, namely, we integrate from 0 to
τci, i = 1, · · · , q, where ci are the zeros of Pq(t)− Pq−1(t), 0 < t ≤ 1. Let

lk(z) =

q∏
i=1,i ̸=k

(z − ci)
/ q∏

i=1,i ̸=k

(ck − ci)

be the Lagrange basic interpolation polynomial functions, aik =
∫ ci
0
lk(z)dz, i, k = 1, . . . , q,

be the corresponding quadrature coefficients and let ṽ(t) =
∑q

k=1 vklk(t) be the correspon-
ding interpolation polynomial. As shown in e.g., [32], the matrix Aq = [aik]

q
i,k=1 can be

5

presented in the form of a product of four matrices,

Aq = CV RV −1,

where C = diag{c1, c2, · · · , cq}, R = diag{1, 1/2, · · · , 1/q} and V is the Vandermonde
matrix, generated by ci, i.e.,

V =

1 c1 c21 · · · cq−1

1

1 c2 c22 · · · cq−1
2

· · · · · · · · · · · · · · ·
1 cq c2q · · · cq−1

q

 .
Since the zeros {ci} are distinct, V is nonsingular, thus, invertible. Clearly the IRK
quadrature matrix Aq is nonsingular too.

Having computedAq, by use of the numerical integration
∫ ci
0
ṽ(s) ds =

∑q
k=1 aikṽ(ck), i =

1, 2, · · · , q, and using tensor products, we obtain the corresponding approximate algebraic
form of (2.2),

(Iq ⊗M + τAq ⊗K)v = f − (Iq ⊗K)(eq ⊗ u0), (2.3)

where f = [fi]
q
i=1, fi = f(τci) and eq is a vector of length q with all components 1. The

matrices M and K are real of size n × n. The block vector v of length qn has block
components vi, i = 1, · · · , q and each vi is of length n. Note that

u(τci)− u0 = τAqvi, i = 1, · · · , q,

where vi = [vi, vn+i, · · · , v(q−1)n+i]. Letting w = Aq ⊗ Inv, and utilising (2.1) we obtain
the alternative transformed form of (2.3),

(A−1
q ⊗M + τIq ⊗K)w = (A−1

q ⊗ In)f − (A−1
q ⊗K)(eq ⊗ u0). (2.4)

This transformation is suggested in [33], see also [34]. The systems (2.3) and (2.4) involve
the qn× qn block matrices

A1 = Iq ⊗M + τAq ⊗K and A2 = A−1
q ⊗M + τIq ⊗K, (2.5)

respectively. To solve systems with those matrices, using an exact block matrix factori-
zation method in a straightforward manner is unfeasible as it would lead to full matrices
and would be clearly too expensive in computer time and memory demands. Therefore,
to reduce the computer resource demands, instead of direct solution methods we must
use a preconditioned iterative solution method, such as the generalized conjugate gradient
method (GCG) ([35]) or the generalized minimum residual (GMRES) method ([11]), en-
tailing the task to construct an efficient preconditioner.

To illustrate the IRK matrices for q = 3 or larger values of q it is convenient to use the
so-called Butcher tableau ([36]), that is,

c1 a11 · · · aiq
...
cq aq1 · · · aqq

b1 · · · bq

 =

[
c Aq

b

]
.

6

However, we note, that for the Radau quadrature method cq = 1, then bi = aqi, i =
1, 2, · · · , q, so there is no need to use the vector b. Note also that ci =

∑q
k=1 ai,k, that it,

the rowsum of A equals the interpolation points used. For further comments on this, see
[34].

We include here some examples of the quadrature matrices for the lowest order Radau
methods. For stage order q = 2 we obtain

A2 =
1

12

[
5 −1
9 3

]
and A−1

2 =
1

2

[
3 1
−9 5

]
.

As shown, e.g., in [3], the Butcher tableaux for q = 3 equals
2
5
−

√
6

10

(
11
45

− 7
√
6

360

) (
37
225

− 169
√
6

1800

) (
− 2

225
+

√
6

75

)
2
5
+

√
6

10

(
37
225

+ 169
√
6

1800

) (
11
45

+ 7
√
6

360

) (
− 2

225
−

√
6

75

)
1 4

9
−

√
6

36
4
9
+

√
6

36
1
9

 .
A computation shows the exact form of A−1

3 ,

A−1
3 =

√
6
2
+ 2 29

√
6

30
− 6

5
2
5
− 4

√
6

15

−29
√
6

30
− 6

5
2−

√
6
2

2
5
+ 4

√
6

15
8
√
6

3
− 1 −8

√
6

3
− 1 5

 .
Here the matrices are computed by exact integration using the symbolic Matlab tool and
displayed in the above form as rational approximations using the Matlab command rats

with relative accuracy 10−6∥A∥, respectively 10−6∥A−1∥. One can notice that the signs
in the subdiagonals of A−1 alternate, which is explained by A−1 being a sort of difference
matrix. Further, the first upper diagonals are not that small, compared to the diagonal
entries. The explicit forms of the matrix Aq for larger values of q are given in Appendix A.

3 Stage-parallel preconditioning methods

Note, that the second term in A2 in (2.5) involves a block-diagonal matrix and our aim is
now to get a simpler form of the first matrix term also.

Based on the fact that Aq and, but to a lesser extent, also A−1
q have a dominating

lower-triangular part, one possibility to precondition A1 and A2 by the matrices

P1 = Iq ⊗M + τL(1)
q ⊗K and P2 = L(2)

q ⊗M + τIq ⊗K,

respectively, where L
(1)
q and L

(2)
q are the lower-triangular factors in the exact LU-factorizations

of Aq, respectively, of A
−1
q . This leads to achieving a block lower-triangular form of P1

and P2, however, the solution with them involves successively solving systems with the
block-diagonal part (Iq⊗M + τ(Aq⊗K))ii of P1 and correspondingly for P2, and does not
allow for any parallelism between the stages of the method.

7

Clearly, a preconditioner based on directly using the lower-triangular part is mainly
sequential, i.e., we must use a successive block-elimination method. We can achieve some
parallelism by eliminating the lower block matrices in each block-column i, i = 1, 2, · · · , q
in parallel. This gives parallelization factors q − 1 for the first block matrix column, q − 2
for the second one, etc., i.e. in the average the parallelization (speedup factor) is q/2.

For P1 the elimination requires solutions with matrices (Iq ⊗M + τ(Aq ⊗K))ii. When
K is ill-conditioned then these block matrices are also ill-conditioned and we need a good
preconditioner of these matrices too, for instance of algebraic multilevel (AMLI) type or
of algebraic multigrid (AMG) type method [37, 38]. There exists various possibilities to
employ parallel solvers for these inner systems, but we do not discuss this any further.

The same type of successive elimination method can be applied also for (2.4). Here the
block-diagonal matrices equal A2,ii which may have a much better form for the efficiency
of the inner solution than A1,ii. Furthermore,

(i) the off-diagonal blocks arise now from the matrix term A−1
q ⊗M , which is in general

sparser than Aq⊗K, in particular ifM is a lumped mass matrix, hence, we save also
in demand of memory;

(ii) in addition, any ill-conditioning of K does not harm the off-diagonal blocks.

Since solving (2.4) instead of (2.3) can significantly reduce the computational cost, it can be
preferable and this is also the approach taken in this paper. In the next section we present
some versions how to construct a preconditioner to the matrix A of a block-diagonal and
enables stage-parallel solutions.

3.1 A summary of some earlier presented methods

Over many years, there have been various attempts to construct parallel solution methods
for IRK problems, either by approximating the method by some lower order method on
simpler form, by constructing a parallel preconditioner or by extending the method to a
multistage method on several time steps. We list here some of these methods. There are
three types of approaches that achieve some parallelism,

(i) across the method,

(ii) across the problem,

(iii) across the time-steps.

For a more general discussion of parallelization in Runge-Kutta methods, we refer to
[39]. An early attempt was to use diagonally-implicit Runge-Kutta methods, also called
DIRK methods, see e.g. [40], also [21]. It is straightforward to parallelize DIRK methods
but, as already mentioned, they suffer from lower order approximation, that is, require
smaller and, therefore, many more time steps. An early experience in using a diagonal
matrix as a preconditioner to the IRK method is found in [41]. There, the linear systems

8

are decoupled into subsystems, which means that the cost of the full LU factorization of
the global matrix is reduced to q factorizations of the diagonal blocks of size n.

As pointed out in [41], the construction of the preconditioner can be based on the
Vandermonde matrix representation of the quadrature matrix, see Section (3.2) for details.

One strategy to construct a preconditioner is based on the spectral decomposition of
the quadrature matrix Aq,

T−1AqT = Λ = diag{λ1, λ2, · · · , λq}.

The matrix in the system (2.4) can then be transformed into a factorized form involving a
block-diagonal matrix that decouples the stages, namely,

A1 = Iq ⊗M + τAq ⊗K = (T−1 ⊗ In)(Iq ⊗M + τΛ⊗K)(T ⊗ In). (3.1)

However, the eigenvalues of Aq are reals and/or complex, which impairs the parallelism
and increases the decomposition cost. Therefore, it is suggested to use the transformation
of Aq

Aq = CV RV −1 = B−1W−TXW−1, (3.2)

where the entries of W are computed as wij = Pj−1(ci) with Pi(x) being the shifted Legen-
dre polynomial of degree i and B = diag(b1, b2, · · · , bq). The matrix X is tridiagonal. The
above W -transformation is first published in [8] and also advocated in [42]. In this way
the complex arithmetic is avoided and the decoupling cost for the parallel implementation
of this approach correspond to that for the implicit Euler method. In [42] the factori-
zation (3.2) is used to obtain a preconditioned of block-tridiagonal form, which is then
LU-factorized and simplified using a method parameter to be determined. In [43] stan-
dard preconditioners for low-order time discretizations are used to construct order-optimal
diagonal block Jacobi preconditioners for high order discretizations. The convergence pro-
perties of the methods are improved in [44] by employing block Gauss-Seidel techniques.

In [45] optimal complex and real Schur-based preconditioners are compared, together
with a block Jordan-form preconditioner and a near optimal singly diagonal approximate
block real Schur decomposition is derived. The latter in particular has memory require-
ments and setup cost comparable to singly DIRK methods.

An example of a parallel across the problem method is the wave-front relaxation tech-
nique, see for instance, [46]. A drawback to mention here is that for stiff problems the
convergence of the wave-front to the exact solution can be very slow. A similar technique
is to use a time-harmonic expansion of the solution, which is a natural approach for prob-
lems with alternating source functions, such as in time-harmonic electromagnetic problems,
cf. [47, 48] and the references therein. In such an approach the problem decouples into
independent subproblems per angular frequency and in this way there is no need to use any
time-integration method at all. Another approach to use Fourier expansions is to extend
the interval [0, τ] to [0, 2τ] and use the backward form of the IRK method on the symmet-
rical interval [τ, 2τ]. Here the solution can be expanded in eiωkt terms, which, again leads
to uncoupled problems for each frequency ωk and can be solved fully in parallel, cf. [48].

9

For parabolic problems of the form

ut +Ku = 0,u(0) = u0,

one can use the Laplace transform with parameter s. We then have

sû+Kû = u0, which implies û = (sI +K)−1u0.

The solution u(t) can be computed via the inverse Laplace transform

u(t) =
1

2π i

∫
Γ

estû(s) ds,

where Γ is a contour in the right half plane, i.e., contains no eigenvalues of sI+A. Here the
integral is approximated with a quadrature formula with nodes sj. Then one only needs
to compute û(s) at all sj, which can be done fully in parallel. For details, see [49, 50].

Another possible parallelization method is the boundary value technique, that has
appeared in [51]. Here the whole time interval is solved by computing the equation as
arising in the implicit trapezoidal method with a backward midpoint rule at the endpoint.
The whole system then becomes block tridiagonal and can be solved in various ways by
common methods for two-point boundary value problems.

Since long, multigrid methods have successfully been used to solve space discretized
problems and also have been shown to be efficiently parallelized. Parallel-in-time, i.e.,
parallelizable across time methods have also been developed, such as multiple-shooting
techniques, cf. e.g. [52]. The Parareal framework has further renewed the interest in such
methods, see [53, 54]. We claim that if one can solve the full IRK method in parallel in
each time step, there is less need for such multiple timestep methods. However, these can
be useful to obtain solution with higher accuracy also in interior integration points. A
GPU implementation of the fully implicit IRK method is found in [55], applied to a system
of ODEs. There, the matrices to be solved have the same structure as in (3.1) and the
preconditioner has a tridiagonal structure.

In [33] a stage-parallel approach employing ILU-based preconditioners is presented. A
study of a series LU-based preconditioning approaches is presented in [56], applied on the
non-transformed equation (2.4). Related to IRK methods, however out of the context of
parallel implementation, preconditioners for quadratic matrix polynomials are analysed in
[57]. A recent work on preconditioning IRK is found in [58], in particular a bound on the
condition number is obtained by an order one constant which is independent of spatial
mesh and time-step size. There, various experiences in preconditioning the systems arising
in IRK are also discussed with regard to their suitability for parallelization.

3.2 Preconditioners for the Radau tensor product system

As discussed in Section 2, the use of (2.4) with the inverse of the quadrature matrix has
several important advantages over (2.3). Therefore, we consider only the form (2.4). To
simplify the notations, we drop the subscript 2 in A2 and in P2.

10

Recall that A = A−1
q ⊗M + τIq ⊗K. Let A−1

q = LqUq, where it is assumed that the
factor Lq is real-valued block lower-triangular and the upper-triangular factor Uq has a

unit diagonal, thus, Uq = Iq + Ûq with Ûq strictly upper-triangular.
As shown in [6], the matrix A−1

q has a dominating lower-triangular part. Therefore, in
the construction of a preconditioner to the matrix A1 in (2.3) it can be efficient to use the
lower triangular part Lq as an approximation of A−1

q . Namely, consider the matrix

P = Lq ⊗M + τIq ⊗K (3.3)

to be used as a preconditioner to A, If applied straightforwardly, solutions of systems
with P do not allow parallelism across stages. As earlier attempts towards overcoming
this and aiming to obtain a fully stage-parallel preconditioner, we refer to [59, 60]. It
is suggested to factorize A−1

q as TΛT−1, where Λ is the diagonal matrix, formed by the
eigenvalues of A−1

q . However, as already mentioned, at least some of the eigenvalues appear
as complex conjugate pairs and we are then forced to use complex arithmetic, leading to
a less favourable computations and increased memory demands. This is the major reason
why we use the spectral decomposition of Lq instead of A−1

q . So, we assume that Lq is
a good approximation to A−1

q and construct the spectral decomposition Lq = TqΛqT
−1
q .

Here, Tq contains the eigenvectors of Lq and Λq is the diagonal part of Lq that contains the
eigenvalues of Lq, all real. Using (2.1) we can now easily transform the solution of Pv = w
to a solution with a block-diagonal matrix. Namely,

P = Lq ⊗M + τIq ⊗K = TqΛqT
−1
q ⊗M + τTqT

−1
q ⊗K

= (Tq ⊗ In)(Λq ⊗M)(T−1
q ⊗ In) + τ(Tq ⊗ In)(Iq ⊗K)(T−1

q ⊗ In)
= (Tq ⊗ In) ((Λq ⊗M) + τ(Iq ⊗K)) (T−1

q ⊗ In)
= (Tq ⊗ In)Pd (T

−1
q ⊗ In),

(3.4)

where Pd = Λq ⊗M + τ(Iq ⊗K). Hence, Pd is block diagonal! Then, instead of Pv = w,
we solve Pdw = (T−1

q ⊗ In)w and recover v as v = (Tq ⊗ In)w. The eigenvectors can be
obtained by some available linear algebra software. Actually, as shown in Appendix B, this
computation can be done by a simple recursion. We see first that

P−1A = (Lq ⊗M + τIq ⊗K)−1(A−1
q ⊗M + τIq ⊗K)

= (Lq ⊗M + τIq ⊗K)−1
[
(Lq ⊗M + τIq ⊗K) + LqÛq ⊗M

]
= Iqn + (Lq ⊗M + τIq ⊗K)−1(LqÛq ⊗M),

(3.5)

where Ûq is the strictly upper triangular part of Uq. Hence,

∥P−1A− Iqn∥ = ∥(Lq ⊗M + τIq ⊗K)−1(A−1
q ⊗M + τIq ⊗K)− Iqn∥

≤ ∥(Lq ⊗M + τIq ⊗K)−1(Lq ⊗M)∥∥Ûq ⊗ In∥,

which is predicted to be small since ∥Ûq∥ < 1 (and can be reasonably small). Further, if
K has a positive definite symmetric part, then ∥(Lq ⊗M + τIq ⊗K)−1(Lq ⊗M)∥ is likely

11

smaller than unity and particularly small for large timesteps τ . To take an example, for
q = 2, then

A−1
2 =

[
3
2

0
−9

2
4

] [
1 1

3

0 1

]
, thus, Û2 =

[
0 1

3

0 0

]
,

that is, ∥Û2∥ = 1/3. For q = 3 and q = 4 we have correspondingly, ∥Û3∥ = 0.4098,

∥Û4∥ = 0.4779 and

L3 =

 3.2247 0 0
−3.5678 2.0673 0
5.5320 −9.5354 9

 , U3 =

1 0.3621 −0.0785
0 1 0.3739
0 0 1

 ,

L4 =

5.6441 0 0 0
−5.0492 2.9419 0 0
3.4925 −5.1747 3.1618 0
−6.9235 8.9548 −16.6361 16

 , U4 =

1 0.3408 −0.1038 0.0308
0 1 0.4183 −0.0949
0 0 1 0.3869
0 0 0 1

 .
Next we analyse the spectrum of the preconditioned matrix P−1A in more detail.

Consider the generalized eigenvalue problem

Av = νPv. (3.6)

We transform it to
(A−P)v = (ν − 1)Pv. (3.7)

Let µ = ν − 1 and observe from (3.5) that A−P = LqÛq ⊗M . Hence, µ is an eigenvalue
of

(Lq ⊗M + τIq ⊗K)−1(LqÛq ⊗M)v = µv. (3.8)

A straightforward computation shows that the matrix in (3.8) has one zero block-column
of size qn× n. Thus, n of the eigenvalues µ are equal to zero. To analyse the rest (q− 1)n
eigenvalues, using the spectral decomposition of Lq, Lq = TqΛqT

−1
q , we obtain the following,

(Lq ⊗M + τIq ⊗K)−1(LqÛq ⊗M)

=
[
(Tq ⊗ In)(Λq ⊗M + τIq ⊗K)(T−1

q ⊗ In)
]−1

(Tq ⊗ In)(ΛqT
−1
q Ûq ⊗M)

= (T−1
q ⊗ In)

−1 [Λq ⊗M + τIq ⊗K]−1 (Tq ⊗ In)
−1(Tq ⊗ In)(ΛqT

−1
q Ûq ⊗M)

= (T−1
q ⊗ In)

−1 [Iqn + (Λq ⊗M)−1(τIq ⊗K)]
−1

(Λq ⊗M)−1(ΛqT
−1
q Ûq ⊗M)

= (T−1
q ⊗ In)

−1 [Iqn + (Λq ⊗M)−1(τIq ⊗K)]
−1

(T−1
q Ûq ⊗ In)

= (Tq ⊗ In)︸ ︷︷ ︸
T̃

[
Iqn + (Λq ⊗M)−1(τIq ⊗K)

]−1︸ ︷︷ ︸
W−1

1

(T−1
q ⊗ In)︸ ︷︷ ︸
T̃−1

(Ûq ⊗ In)︸ ︷︷ ︸
W2

(3.9)

Due to the similarity transformation with T̃ the eigenvalues of the matrix T̃W−1
1 T̃−1 are

equal to those of the matrix W−1
1 = [Iqn + (Λq ⊗M)−1(τIq ⊗K)]

−1
. The matrix W−1

1 is

12

block-diagonal with blocks
(
In +

τ
λj
M−1K

)−1

, j = 1, · · · , q, λj are the diagonal entries of

Λq, and all eigenvalues of W2 are zero since Ûq is strictly upper triangular.

We need to estimate the bounds of the spectrum of W̃ = T̃W−1
1 T̃−1W2. The matrix

W̃ is a product of four matrices and is nonsymmetric. In such cases the standard tools to
analyse its spectrum are rather limited. We derive an upper bound of its spectral radius,
which shows that the spectrum can be considered nearly h- and τ -independent, and is
improved for larger timesteps. To this end we use the following results. Let A and B
denote generic square matrices, S(A) be the spectrum of A and W(A) its field of values,
ρ(A) and ω(A) be the spectral and the numerical radius of A, respectively. The following
relations are known to hold:

(P1) ρ(A) ≤ ω(A), where ρ(A) = max{|λ : λ ∈ spectrum ofA},

(P2) 1
2
∥A∥ ≤ ω(A) ≤ ∥A∥, where ω(A) = sup{(x, Ax) : ∥x∥ = 1},

(P3) ω(AB) ≤ 4ω(A)ω(B), c.f. [61],

(P4) ∥A⊗B∥ = ∥A∥ ∥B∥ and ρ(A⊗B) = ρ(A) ρ(B) , c.f. [61],

(P5) Theorem ([62]) Let T be a Toeplitz matrix of size n and f(z) be its symbol. Let
Co(Ω), Ω ⊂ C be the convex hull of Ω. Then

W(T) ⊆ Co[f(∥z∥ = 1)].

Moreover, the Hausdorff distance between the two sets goes to 0 with n→ ∞.

We reformulate the eigenvalue problem T̃W−1
1 T̃−1W2v = µv in (3.8) as

W−1
1 T̃−1W2T̃w = µw, or, equivalently, W−1

1

(
(T−1

q ÛqTq)⊗ In

)
w = µw, (3.10)

where w = T̃−1v. We use that T̃−1W2T̃ = (T−1
q ⊗ In)(Ûq ⊗ In)(Tq ⊗ In)

−1 = T−1
q ÛqTq ⊗ In.

Then, we have

ρ(W̃) ≤ ω(W̃) ≤ 4ω(W−1
1)ω((T−1

q ÛqTq ⊗ In)) ≤ 4ω((T−1
q ÛqTq)ω(W

−1
1)

= 4∥T−1
q ÛqTq∥ω(W−1

1) = Const ω(W−1
1),

(3.11)

where Const is a constant that depends on q but does not depend on h and τ . The value
of this constant is shown in Table 1.

It remains to estimate ω(W−1
1) = ω([Iqn + (Λq ⊗M−1)(τIq ⊗K)]

−1
). The matrix se-

quence {W1}, as a function of the increasing matrix size n, consists of block-diagonal
matrices with blocks In + τ

λi
M−1K. As {W1} and, respectively, {W−1

1 } belong to the
class of the generalized locally Toeplitz (GLT) matrices, their numerical radius can be
estimated using property (P5). The theoretical justification to apply GLT in our case is

13

q ∥T∥ ∥T−1∥ ∥Û∥ 4 ∥T−1ÛT∥
2 1.369 2.819 0.33333 4.84
3 1.667 8.856 0.40983 8.32
4 1.922 1.20 102 0.47791 35.67
7 2.541 3.48 104 0.59606 2.95 102

9 2.882 1.96 105 0.64093 4.74 103

Table 1: Value of the factor Const in (3.11)

given in [63, 64, 65, 66]. Appendix C summarizes some major GLT properties, relevant to
the current spectral analysis.

Consider next the matrix sequences {M} and {K} in terms of n. In 2D the mass matrix
M is block-tridiagonal and each block has a tridiagonal structure. As shown in [67], for
quadrilateral meshes the block-symbol of {M}, fM(θ1, θ2) is computed as follows,

fM(θ1, θ2) =
4h2

36
(2 + cos(θ1))(2 + cos(θ2)). (3.12)

The function fM/h2 is the GLT symbol of {M/h2}. The nonscaled matrix sequence {M}
is distributed as the constant 0 due to the factor h2 in front of M , which goes to zero as
the matrix size tends to infinity.
The stiffness matrix has also a block-tridiagonal structure and the block-symbol of {K} is

fL(θ1, θ2) =
1

3
(8− 2 cos(θ1)− 2 cos(θ2)(1 + 2 cos(θ1))). (3.13)

Here, θ1 and θ2 are generic angles between −π and π. Then, as the GLT matrices form an
algebra, we straightforwardly derive the symbol of W−1

1 , fW−1
1 as follows,

fW−1
1 (θ1, θ2) =

1

1 + 4
τ h−2

λi

8− 2 cos(θ1)− 2 cos(θ2)(1 + 2 cos(θ1))

(2 + cos(θ1))(2 + cos(θ2))

. (3.14)

From Property (P5) we see that for θj = ±π, j = 1, 2 we have that

fW−1
1 =

λi
λi + 8 τ h−2

< 1.

We add next the relations between τ and h to balance the global discretization error. For
piece-wise linear discretization in space the space discretization error is O(h2), the time
discretization error is O(τ 2q−1) and for given q τ and h should be chosen so that both errors

should be of the same order. Thus, h = τ
2q−1

2 and τ h−2 = τ 2−2q. Table 2 shows the value of
τ h−2 for some values of τ and q. It shows that fW−1

1 approaches zero very fast, which shows
that |µ| approaches zero. We see that since ω(W−1

1) ∈ W(W−1
1) ⊆ Co[fW−1

1 (∥z∥ = 1)] and

14

τ\q 2 4 7 9
0.1 1.0 101 1.0 105 1.0 1011 1.0 1015

0.01 1.0 104 1.0 1011 1.0 1023 1.0 1031

0.001 1.0 106 1.0 1017 1.0 1035 2.0 1047

Table 2: Value of τ h−2

Figure 1: Problem 1: Eigenvalues of the preconditioned system, left q = 2, right q = 9

fW−1
1 (∥z∥ = 1) decreases rapidly to zero with h→ 0 and τ appropriately chosen.
Figure 1 illustrates the spectrum of P−1A.

Consider now an alternative for obtaining an LU factorization of A−1
q , where Lq is

real-valued and dominating over Ũq. We examine the particular factorization of Aq that
is based on the Vandermonde matrix, as shown in (3.2), namely, Aq = CV RV −1, where
C = diag(c1, c2, · · · , cq), R = diag(1, 1/2, · · · , 1/q) and V is the Vandermonde matrix,
defined by the integration points ci, i = 1, 2, · · · , q. Then

A−1
q = V R−1V −1C−1 and A−1

q C = V R−1V −1.

Let factorize V RV −1 = L0U0, where U0 has unit diagonal. Clearly, V R−1V −1 = U−1
0 L−1

0 .
Choose now as Lq the matrix

Lq,0 = L−1
0 C−1, (3.15)

compute its spectral decomposition Lq,0 = Tq,0Λq,0T
−1
q,0 and construct a preconditioner as

in (3.3),
P = Lq,0 ⊗M + τIq ⊗K. (3.16)

As already mentioned, the eigenvectors can be computed by recursion as shown in Appendix
B. Then, the following relations hold:

L−1
q,0A

−1
q = CV RV −1U0V R

−1V −1C−1 = ZU0Z
−1

15

with Z = CV RV −1. Thus, L−1
q,0A

−1
q is spectrally equivalent to U0 which latter has all

eigenvalues equal to one. The analysis of the preconditioned matrix P−1A with Lq,0 instead
of Lq remains the same, the difference is in the effect of the matrices Tq.

As already mentioned, the systems (2.3) and (2.4) are in general very large scale,
of order (qn)2 but with the approach taken here we solve systems only of size n. In
typical problems, in particular for there space dimensional problems, n itself is very large.
We assume that we can either construct a feasible approximation of the diagonal blocks
λj M + τK, j = 1, 2, · · · , q or can solve the inner systems with some efficient iterative
solution method. A suitable approximation could for instance be based on a modified
incomplete factorization, see [68, 69, 70] with sparse matrix factors. For the approach to
solve systems with the diagonal blocks we can apply some algebraic multilevel technique,
see e.g. [71, 72] and [73], or an algebraic multigrid (AMG) solver, which we utilize in this
study, using library-provided AMG implementations.

3.3 Parallelization aspects

As the target solution method is a preconditioned Krylov Subspace iteration, the two
major ingredients are the matrix-vector multiplication with the matrix A and the solution
of linear systems with the matrix P . The matrices A and P are of dimension qn. These
matrices are never assembled but rather we utilize their structure to implement the above
two operations efficiently in parallel.

We aim at distributed memory MPI-based implementation of the computations. In the
chosen parallel computing environment there are two general strategies to administer the
fully implicit IRK method and the preconditioner P in (3.4).

The first strategy is to distribute the space discretization mesh among a number of
processes. This entails that the solution of each system on the diagonal of Pd is done in
parallel in space, using well-known parallelizable methods, such as multilevel, multigrid,
domain-decomposition techniques etc, implemented and optimized in some of the estab-
lished scientific computing libraries. However, in this setting there is no parallelism across
the stages. This is the implementation used for the numerical tests in this work.

The second strategy can be based on allocating q groups of processes and in order to
use also parallelization in space, within each group replicate the matrices M and K. On
the cost of a larger memory footprint and implementing the matrix-vector multiplication
in a block-fashion, we can achieve full stage-parallel implementation of the algorithm. This
implementation, its efficiency and comparison with the first strategy is a topic of another
study, [75].

4 Numerical tests

The parallel tests are run on the Rackham cluster at the Uppsala Multidisciplinary Center
for Advanced Computational Science (UPPMAX). Rackham consists of 486 nodes, each
node having two 10-core Intel Xeon E5 2630 v4 at 2.20 GHz/core. We use nodes with

16

128 GB of memory. The test problems are implemented in the deal.II FEM library [76],
interfacing with PETSc [77] to utilize the available preconditioned iterative methods.

Although implementing the IRK algorithm for time-dependent PDE of parabolic type
is straightforward, for completeness we sketch it in Algorithm 1.

Algorithm 1 IRK: heat equation code outline

1. Setup system - assemble block matrices, create preconditioner, initialize multigrid
block-solvers.
2. Time-stepping
Assemble initial state

for timesteps do
Assemble right-hand-side
Solve system (2.4) using GCR, preconditioned by P in (3.3), the block systems in

Pd in (3.4) are solved with CG (P1)/GCR (P2) preconditioned by AMG.
We point out that in the tests, presented here, the block systems are solved one

after another, parallelizing only in space, however the algorithm allows a stage-parallel
implementation, which is the subject of [75].

The performance of the IRK method and the proposed preconditioner are illustrated
using the following two test problems.

Problem 1. Heat equation with a discontinuous initial guess
Consider the equation

∂u(x, y, t)

∂t
−∆u(x, y, t) = f(x, y, t) in Ω = (0, 1)2, t ∈ [0, T]

u(x, y, 0) = uex(x, y, 0), (x, y) ∈ Ω

u(x, y, t) = uex(x, y, t), (x, y) ∈ ∂Ω

and choose

f(x, y, t) = sin(axπx) sin(ayπy)(π cos(πt)− at(1 + sin(πt))) exp(−att)+
(a2x + a2y)π

2 sin(axπx) sin(ayπy)(1 + sin(πt)) exp(−att).

The function f(x, y, t) corresponds to the analytical solution

uex(x, y, t) = sin(axπx) sin(ayπy)(1 + sin(πt))e−att.

For the tests we choose ax = ay = 2 and at = 0.5. For the outer solver we use GCR
with stopping criteria ∥P−1(Ax − b)∥2 < 10−8 · q · ndofs. For the q block-systems in the
preconditioner we solve using CG preconditioned by an AMG. We fix τ = 0.1 and take five
timesteps. We run tests with the two stage (q = 2) and the nine stage method (q = 9).

17

Problem 2. [Similar to [57]] Consider the two-dimensional time-dependent convection-
diffusion equation

∂u(x, y, t)

∂t
+ σ(t)(−∆u+ b · ∇u− f) = 0 in Ω = (0, 1)2, t > 0, (4.1)

with initial condition u(x, y, 0) = u0 to be the pyramid function shown in Figure 2, boundary
conditions

u = 0 on y = 0, y = 1

u = g(x, y, t), ℓ > 1 on x = 1,
∂u

∂n
= 0 on x = 0,

b(x, y) = [−ℓ, 0], σ(t) = 1+ 2
5
sin(kπt), g(x, y, t) = 2ℓy(1−y) sin(kπt) and f(x, y, t) = 2e−ℓx.

Figure 2: Problem 2: Initial condition

As we deal with nonhomogeneous and time-dependent boundary conditions, we follow
the general practice to construct a partial solution ψ(x, y, t) that satisfies the boundary
conditions and then reformulate the problem to find v = u−ψ. In order to homogenize the
boundary conditions we choose

ψ(x, y, t) = e−ℓxx2y(1− y)sin(kπt).

We find then that the function v(x, y, t) = u(x, y, t)−ψ(x, y, t) is the solution of the initial
boundary problem

∂v(x, y, t)

∂t
+ σ(t)(−∆v + b · ∇v − f̃) = 0 in Ω = (0, 1)2, t > 0,

with boundary conditions v = 0 on y = 0, y = 1, x = 1,
∂v

∂n
= 0 on x = 0,

18

initial condition
v(x, y, 0) = u0(x, y)− ψ(x, y, 0) = u0(x, y).

and

f̃ = f +
1

σ(t)

∂ψ

∂t
−∆ψ + b · ∇ψ, in detail,

f̃(x, y, t) = −2e−ℓx+
kπe−ℓxx2y(1− y) cos(kπt)

1 + 2
5
sin(kπt)

−
[
(ℓ2x2 − 4ℓx+ 2)y(1− y)− 2x2

]
e−ℓx sin(kπt).

The additional complication with the σ-scaling is taken into account when constructing the
preconditioner as follows. The system equation, analogous to (2.3), now reads

(Iq ⊗M + τΣqAq ⊗K)k = f̂,

where Σq is a diagonal matrix, containing the values of σ in the integration points. Multi-
plying the latter equation by A−1

q Σ−1
q from the left we obtain

(A−1
q Σ−1

q ⊗M + τIq ⊗K)k = (A−1
q Σ−1

q ⊗ In)̂f.

As for Problem 1, we then select the preconditioner to be

P := (LΣ−1
q ⊗M + τIq ⊗K).

Finally we decompose LqΣ
−1
q = TΛT−1 and obtain an analogous form of the preconditioner

used in Problem 1 with the difference that the eigenvalue decomposition is computed in
every time step. The cost of this is low, however, as the matrix in question is of size q× q.

The parallel performance results for Problem 1 for q = 2 are presented in Table 3 and
for q = 9 - in Table 4. The corresponding results for Problem 2 for q = 2 are shown in
Table 5.

From the timing results for q = 2 in Table 3, column 2, we see that the fixed-size
speedup is found to be 139/75 = 1.85 close to the ideal factor 2 and and 139/62 = 2.24
instead of the ideal factor 3.

From the timing results for q = 9 in Table 4, column 2, we observe that the fixed-size
speedups is 1613/824 ≈ 1.96 which is very close to the ideal factor 2 and 1613/636 ≈ 2.54
instead of the ideal factor 3.

5 Concluding remarks

Given their fundamental significance in many branches of science, solving time-dependent
partial differential equations has been an important question for centuries and it remains
an issue with high impact in many scientific computing applications. When handling such
problems, the use of high order accurate implicit Runge-Kutta methods of Radau type can
be numerically very efficient since the methods are strongly A-stable, enable use of large
time-steps and can handle highly ill-conditioned matrices with a widespread spectrum.

19

No Total Av.out. Av.in.
CPUs runtime Aiter. iter. ∥uc(τF)− ua(τF)∥∞ ∥uc(τF)− ua(τF)∥2/ndofs

Block dimension 16641, full system dimension 33282
20 1 2 5 2.395 · 10−4 9.209 · 10−7

Block dimension 1050625, full system dimension 2101250
20 11 2 5 7.014 · 10−5 3.418 · 10−8

Block-dimension 16785409, full system dimension 33570818
100 37 2 5 7.461 · 10−5 9.103 · 10−9

Block dimension 67125249, full system dimension 134250498
100 139 2 5 7.463 · 10−5 4.553 · 10−9

200 75 2 5 7.397 · 10−5 4.513 · 10−9

300 62 2 5 7.330 · 10−5 4.470 · 10−9

Block dimension 268468225, full system dimension 536936450
600 125 2 6 7.301 · 10−5 2.227 · 10−9

Table 3: Problem 1: Parallel run times and errors for q = 2, solving for 5 time steps with
τ = 0.1. Errors evaluated at τF = 0.5, parallelism only in space variables

It has been shown that for linear problems the arising globally coupled linear systems
on each time-step can be also solved efficiently by a preconditioned iterative method with
a high quality stage-parallel (block-diagonal) preconditioner. To construct the precon-
ditioner, we discuss two ways to approximate the inverse of the quadrature matrix by a
lower-triangular matrix with real eigenvalues, in this way fully avoiding complex arithmetic.

To solve nonlinear problems, one can use hierarchical basis functions in space and a
lower order Radau method for the time-discretization on the coarse mesh and interpolate
the solution to the fine mesh. This is planned to be presented in a separate paper. To
further increase the efficiency, one can also use adaptive space mesh refinement methods
and one can also use lower order Radau methods and coarser meshes to obtain an already
quite accurate approximation for the higher order Radau methods and finer mesh space
discretizations.

Acknowledgments

The work of the second author (fully) and the third author (partly) is supported by Re-
search Grant VR-2017-03749, ’Mathematics and numerics in PDE-constrained optimization
problems with state and control constraints ’, financed by the Swedish Research Council.
Gratitude is extended to Peter Munch for his help in navigating deal.II.

The computations have been enabled by resources in project SNIC 2021/22-633 pro-
vided by the Swedish National Infrastructure for Computing (SNIC) at UPPMAX, partially
funded by the Swedish Research Council through grant agreement no. 2018-05973”.

20

No. Total Av.out. Av.in.
CPUs runtime iter. iter. ∥uc(τF)− ua(τF)∥∞ ∥uc(τF)− ua(τF)∥2/ndofs

Block dimension 16641, full system dimension 149769
20 6 9 6 3.144 · 10−4 1.209 · 10−6

Block dimension 1050625, full system dimension 9455625
20 109 7 6 2.365 · 10−6 1.151 · 10−9

Block-dimension 16785409, full system dimension 151068681
300 204 7 7 5.934 · 10−6 7.236 · 10−10

Block dimension 67125249, full system dimension 604127241
100 1613 6 7 2.251 · 10−5 1.373 · 10−9

200 824 6 8 2.030 · 10−5 1.239 · 10−9

300 636 6 7 1.686 · 10−5 1.029 · 10−9

Block dimension 268468225, full system dimension 2416214025
600 1467 6 8 1.824 · 10−5 5.566 · 10−10

Table 4: Problem 1: Parallel run times and errors for q = 9, solving for 5 time steps with
τ = 0.1. Errors evaluated at τF = 0.5, parallelism only in space variables

Conflicts of interest

There are no conflicts of interest related to the study, presented in this paper.

References

[1] J. Crank, P.A. Nicolson, A practical method for numerical evaluation of partial diffe-
rential equations of the heat conduction type, Mathematical Proceedings of the Cam-
bridge Philosophical Society, 1 (1947), 50–67.

[2] G. Dahlquist, A special stability problem for linear multistep methods, BIT 3 (1963),
27–43.

[3] O. Axelsson, A class of A-stable methods. Nordisk Tidskrift for Informationsbehan-
dling (BIT) 9 (1969), 185–199.

[4] B.L. Ehle, High order A-stable methods for the numerical solution of D.E.s, BIT 8
(1968), 276–278.

[5] J.C. Butcher, Implicit Runge-Kutta processes, Mathematics of Computation, 18
(1964), 50–64.

[6] O. Axelsson, Global integration of differential equations through Lobatto quadrature.
Nordisk Tidskrift for Informationsbehandling, 4 (1964), 69–86.

21

No. Total Av.out. Av.in. No. Total Av.out. Av.in.
CPUs runtime iter. iter. CPUs runtime iter. iter.

q = 2, l = 2, k = 5, τ = 0.1 q = 4, l = 10, k = 10, τ = 0.001
Block dim. 4 198 401 Block dim. 4 198 401

20 64 3 6 20 210 7 6
Block dim. 16 785 409 Block dim. 16 785 409

100 69 3 8 100 191 7 7
Block dim. 67 125 249 Block dim. 67 125 249

100 276 3 8 100 764 6 7
200 143 3 9 200 393 6 7
300 106 3 9 300 288 6 7

Block dim. 268 468 225 Block dim. 268 468 225
600 245 3 10 600 664 6 8

Table 5: Problem 2: Parallel run times and iteration counts, parallelism only in space
variables

[7] B.L. Ehle, A-stable methods and Padé approximations to the exponential, SIAM
Journal on Mathematical Analysis 4 (1973), 671–680.

[8] E. Hairer, G. Wanner, Algebraically stable and implementable Runge-Kutta methods
of higher order. SIAM Journal on Numerical Analysis 18 (1981), 1098–1108.

[9] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems, Springer-Verlag, 1991.

[10] E. Hairer, G. Wanner, Stiff differential equations solved by Radau methods, Journal
of Computational and Applied Mathematics 111 (1999), 93–111.

[11] Y. Saad, Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA, 2003.

[12] W. Hundsdorfer, J. Verwer, Numerical Solution of Time-Dependent Advection-
Diffusion-Reaction Equations, Springer-Verlag Berlin Heidelberg, 2003.

[13] J.D. Lambert, Numerical Methods for Ordinary Differential Systems, Wiley, New
York, 1992.

[14] L. Petzold, Order results for implicit Runge-Kutta methods, applied to differential-
algebraic systems, SIAM Journal on Numerical Analysis, 23 (1986), 837–852.

[15] O. Axelsson, R. Blaheta, R. Kohut, Preconditioning methods for high-order strongly
stable time integration methods with an application for a DAE problem, Numerical
Linear Algebra with Applications 22 (2015), 930–949.

[16] S. P. Nørsett, Semi-explicit Runge-Kutta Methods, Report Mathematics & Compu-
tation, 1974, Department of Mathematics, University of Trondheim, Norway.

22

[17] Z. Zlatev, Modified diagonally implicit Runge-Kutta methods. SIAM Journal on Sci-
entific and Statistical Computing 2 (1981), 321–334.

[18] P.J. van der Houwen, Parallel step-by-step methods. Parallel methods for ordinary
differential equations (Grado, 1991). Applied Numerical Mathematics 11 (1993), no.
1-3, 69–81.

[19] P.J. van der Houwen, B.P. Sommeijer, Analysis of parallel diagonally implicit iteration
of Runge-Kutta methods. Parallel methods for ordinary differential equations (Grado,
1991). Applied Numerical Mathematics 11 (1993), 169–188.

[20] O. Axelsson, On the efficiency of a class of A-stable methods. Nordisk Tidskrift for
Informationsbehandling (BIT) 14 (1974), 279–287.

[21] J.C. Butcher, Diagonally-implicit multi-stage integration methods, Applied Numerical
Mathematics, 11 (1993), 347–363.

[22] T.J.R. Hughes, G.M. Hulbert. Space-time finite element methods for elastodynamics:
Formulations and error estimates. Computational Methods in Applied Mathematics,
66 (1988), 339–363.

[23] K. Eriksson, C. Johnson, Adaptive finite element methods for parabolic problems I:
A linear model problem. SIAM Journal on Numerical Analysis 28 (1991), 43–77.

[24] O. Steinbach, H. Yang, Comparison of algebraic multigrid methods for an adaptive
space-time finite-element discretization of the heat equation in 3D and 4D. Numerical
Linear Algebra with Applications 25 (2018), e2143.

[25] J. Xu, A novel two-grid method for semilinear elliptic equations. SIAM Journal on
Scientific Computing, 15 (1994), 231–237.

[26] O. Axelsson, On mesh independence and Newton type methods. Proc. International
Symposium on Numerical Analyses (ISNA92), Prague, 1992, Applied Mathematics 38
(1993), 249–265.

[27] O. Axelsson, W. Layton, A Two–Level Method for the Discretization of Nonlinear
Boundary Value Problems. SIAM Journal on Numerical Analysis, 33 (1996), 2359–
2374.

[28] O. Axelsson, I. Kaporin, On a class of nonlinear equation solvers based on the resid-
ual norm reduction over a sequence of affine subspaces. SIAM Journal on Scientific
Computing 16 (1995), 228–249.

[29] O. Axelsson, S. Sysala, An adaptive Newton method for solving nonlinear partial
differential equations. In cooperation with and technically co-sponsored by IEEE PS
Computer Society Chapter (IEEE) (2018): 89.

23

[30] O. Axelsson, M. Neytcheva, A. Ström, An efficient preconditioning method for state
box-constrained optimal control problems, Journal of Numerical Mathematics 26
(2018), 185–207.

[31] O. Axelsson, M. Neytcheva, Numerical solution methods for implicit Runge-Kutta
methods of arbitrarily high order. In P. Frolkovič, K. Mikula, D. Ševčovič, Proceedings
of the conference Algoritmy 2020, (2020), pp 11-20. http://www.iam.fmph.uniba.
sk/amuc/ojs/index.php/algoritmy/article/view/1593/842

[32] W. Hoffman, J.J.B de Swart Approximating Runge-Kutta matrices by triangular ma-
trices, BIT Numerical Mathematics 37 (1997), 346–354.

[33] W. Pazner, P.-O. Persson, Stage-parallel fully implicit Runge-Kutta solvers for dis-
continuous Galerkin fluid simulations. Journal of Computational Physics 335 (2017),
700–717.

[34] Ernst Hairer, Gerhard Wanner, Construction of Implicit Runge-Kutta Methods. In
Solving Ordinary Differential Equations II, 71–90. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1996.

[35] O. Axelsson. A Generalized Conjugate Gradient, Least Square Method, Numerische
Mathematik, 51 (1987) 209–227.

[36] J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations, Wiley,
Chichester (1987).

[37] Y. Notay An aggregation-based algebraic multigrid method. Electronic Transactions
on Numerical Analysis, 37 (2010), 123–146.

[38] P.S. Vassilevski, Multilevel Block Factorization Preconditioners. Springer-Verlag, New
York, 2008.

[39] K.R. Jackson, S.P. Nørsett, The potential for parallelism in Runge-Kutta methods.
Part I. RK formulas in standard form, SIAM Journal on Numerical Analysis, 32
(1995), 49-82.

[40] R. Alexander, Diagonally implicit Runge-Kutta methods for stiff ODEs, SIAM Journal
on Numerical Analysis, 14 (1977), 1006–1021.

[41] P. van der Houwen, J.J.B. de Swart, Parallel linear system solver for Runge-Kutta
methods, Advances in Computational Mathematics, 7 (1997), 157–181.

[42] L.O. Jay, T. Braconnier, A parallelizable preconditioner for the iterative solution of
implicit Runge-Kutta type method, Journal of Computational and Applied Mathemat-
ics, 111 (1999), 63–76.

24

[43] K.-A. Mardal, T. K. Nilssen, G. A. Staff, Order optimal preconditioners for implicit
Runge-Kutta schemes applied to parabolic PDEs, SIAM Journal in Scientific Com-
puting 29 (2007), 361–375.

[44] G. A. Staff, K.-A. Mardal, T. K. Nilssen, Preconditioning of fully implicit Runge-
Kutta schemes for parabolic PDEs, Model Identification Control 27 (2006), 109–123.

[45] Xiangmin Jiao, Xuebin Wang, Qiao Chen, Optimal and low-memory near-optimal
preconditioning of fully implicit Runge-Kutta schemes for parabolic PDEs, SIAM J.
Sci. Comput., 2021 43 (2021), A3527–A3551.

[46] P.J. van der Houwen, W.A. van der Veen, Waveform relaxation methods for implicit
differential equations. Parallel methods for ODEs. Advances in Computational Math-
ematics 7 (1997), 183–197.

[47] O. Axelsson, D. Lukáš, Preconditioners for time-harmonic optimal control eddy-
current problems. Large-scale scientific computing, 47–54, Lecture Notes in Comput.
Sci., 10665, Springer, Cham, 2018.

[48] O. Axelsson, M. Neytcheva, Z.-Z. Liang, Parallel solution methods and preconditioners
for evolution equations. Mathematical Modelling and Analysis, 23 (2018), 287–308.

[49] D. Sheen, I.H. Sloan, V. Thomée, A parallel method for time-discretization of
parabolic problems based on contour integral representation and quadrature, Mathe-
matics of Computation, 69 (1999), 177–195.

[50] D. Sheen, I.H. Sloan, V. Thomée, A parallel method for time discretization of parabolic
equations based on Laplace transformation and quadrature, IMA Journal of Numerical
Analysis, 23 (2003), 269–299.

[51] O. Axelsson, J. Verwer, Boundary value techniques for initial value problems in ordi-
nary differential equations, Mathematics of Computation, 45 (1985), 153–171.

[52] A. Bellen, M. Zennaro, Parallel algorithms for initial-value problems for difference and
differential equations, Journal of Computational and Applied Mathematics, 25 (1989),
341–350.

[53] J.-L. Lions, Y. Maday, G. Turinici, A ”parareal” in time discretization of PDEs,
Comptes Rendus de l Académie des Sciences - Series I - Mathematics 332 (2001),
661–668.

[54] M. Bolten, D. Moser, R. Spech, A multigrid perspective on the parallel full approx-
imation scheme in space and time, Numerical Linear Algebra with Applications 24
(2017), e2110.

25

[55] Kaipei Liu, Xiaobing Liao, Yuye Li, Parallel simulation of power systems transient sta-
bility based on implicit Runge–Kutta methods and W-transformation, Electric Power
Components and Systems, 47 (2017), 2246–2256.

[56] M. Rana, V. Howle, K. Long, A. Meek, W. Milestone, A New Block Preconditioner
for Implicit Runge-Kutta Methods for Parabolic PDE Problems. https://arxiv.
org/abs/2010.11377, 2021.

[57] O. Axelsson, R. Blaheta, S. Sysala, B. Ahmad, On the solution of high order stable
time integration methods, Boundary Value Problems 108 (2013), 22 p.

[58] Ben S. Southworth, Oliver A. Krzysik, Will Pazner, Hans De Sterck, Fast solution of
fully implicit Runge-Kutta and discontinuous Galerkin in time for numerical PDEs,
Part I: the linear setting, SIAM J. Sci. Comput., Vol 44, No.1, (2022) A416–A443.

[59] J.C. Butcher, On the implementation of implicit Runge-Kutta methods, BIT Numer-
ical Mathematics, 16 (1976), 237—240.

[60] T.A. Bickart, An Efficient Solution Process for Implicit Runge–Kutta Methods, SIAM
Journal on Numerical Analysis, 14 (1977), 1022—1027.

[61] R. Bhatia, Matrix Analysis, Berlin. Springer-Verlag New York Berlin Heidelberg, 1997.

[62] M. Eiermann, Field of values and iterative methods, Linear Alg. Appl., 180 (1993),
167–197.

[63] C. Garoni, S. Serra-Capizzano, Generalized Locally Toeplitz Sequences: Theory and
Applications, Vol. I, Springer, Cham, 2017.

[64] C. Garoni, S. Serra-Capizzano, Generalized locally Toeplitz sequences: Theory and
Applications, Vol. II. Springer, Cham, 2018.

[65] G. Barbarino, C. Garoni, S. Serra-Capizzano, Block generalized locally Toeplitz se-
quences: theory and applications in the unidimensional case. Electron. Trans. Numer.
Anal. 53 (2020), 28–112.

[66] G. Barbarino, C. Garoni, S. Serra-Capizzano, Block generalized locally Toeplitz se-
quences: theory and applications in the multidimensional case. Electron. Trans. Nu-
mer. Anal. 53 (2020), 113–216.

[67] Ali Dorostkar, Maya Neytcheva, Stefano Serra-Capizzano, Spectral analysis of coupled
PDEs and of their Schur complements via the notion of Generalized Locally Toeplitz
sequences, Computer Methods in Applied Mechanics and Engineering, 309 (2016), 74-
105.

[68] I. Gustafsson, Modified incomplete Cholesky (MIC) methods. Preconditioning
methods: analysis and applications, 265–293, Topics in Comput. Math., 1, Gordon
& Breach, New York, 1983.

26

[69] O. Axelsson, A general incomplete block-matrix factorization method, Linear Algebra
and its Applications, 74 (1986), 179–190.

[70] R. Beauwens, Modified incomplete factorization strategies. In: Axelsson O., Kolotilina
L.Y. (eds) Preconditioned Conjugate Gradient Methods. Lecture Notes in Mathemat-
ics, vol 1457. (1990), Springer, Berlin, Heidelberg.

[71] O. Axelsson, P.S. Vassilevski, Algebraic multilevel preconditioning methods. I. Nu-
merische Mathematik 56 (1989), 157–177.

[72] O. Axelsson, M. Neytcheva, Algebraic multilevel iteration method for Stieltjes matri-
ces, Numer. Linear Algebra Appl. 1 (1994), 213–236.

[73] O. Axelsson, Iterative Solution Methods. Cambridge University Press, Cambridge
1994.

[74] Hao Chen, Kronecker product splitting preconditioners for implicit Runge-Kutta dis-
cretizations of viscous wave equations, Applied Mathematical Modelling, 40 (2016),
4429–4440.

[75] P. Munch, I. Dravins, Performance study of a stage-parallel implementation of a fully
implicit Runge-Kutta method. Manuscript in progress.

[76] D. Arndt, W. Bangerth, B. Blais, M. Fehling, R. Gassmöller, T. Heister, L. Heltai,
U. Köcher, M. Kronbichler, M. Maier, P. Munch, J. Pelteret, S. Proell, K. Simon, B.
Turcksin, D. Wells, J. Zhang, The deal.II Library, Version 9.3, Journal of Numerical
Mathematics, vol. 29, no. 3, (2021) 171–186.

[77] S. Balay et. al., PETSc/TAO Users Manual, textitArgonne National Laboratory, ANL-
21/39 - Revision 3.16 (2021).

A Appendix: Construction of IRM methods

The standard Legendre polynomials of degree q are defined in (1.2), for convenience in-
cluded once again:

Lq(x) =
1

2qq!

dq

dxq
(x2 − 1)q, (A.1)

which yields the following expansion, used in the numerical computations:

Lq(x) =
1

2q

⌊ q
2
⌋∑

k=0

(−1)k(2q − 2k)!

k!(q − k)!(q − 2k)!
xq−2k.

27

To exemplify, the polynomials, generated by the above formula are as follows:

q Lq(x)
1 x
2 1

2
(3x2 − 1)

3 1
2
(5x3 − 3x)

4 1
8
(35x4 − 30x2 + 3)

5 1
8
(63x5 − 70x3 + 15x)

6 1
16
(231x6 − 315x4 + 105x2 − 5)

7 1
16
(429x7 − 693x5 + 315x3 − 35x)

8 1
128

(6435x8 − 12012x6 + 6930x4 − 1260x4 + 35)
9 1

128
(12155x9 − 25740x7 + 18018x5 − 4620x3 + 315x)

10 1
256

(46189x10 − 109395x8 + 90090x6 − 30030x4 + 3465x2 − 63)
11 1

256
(88179x11 − 230945x9 + 218790x7 − 90090x5 + 15015x3 − 693x)

As is readily seen, these polynomials are normalized at 1.
The shifted Legendre polynomials can be defined, for instance, by the substitution

x = 2y − 1, x ∈ [−1, 1], y ∈ [0, 1]:

Ls
q(x) = Lq−1(2x− 1). (A.2)

This leads to the following (shifted) polynomials:

q Ls
q(x)

0 1
1 2x− 1
2 6x2 − 6x+ 1
3 20x3 − 30x2 + 12x− 1
4 70x4 − 140x3 + 90x2 + 20x+ 1
5 252x5 − 630x4 + 560x3 − 210x2 + 30x− 1
6 924x6 − 2772x5 + 3150x4 − 1680x3 + 420x2 − 42x+ 1
7 3432x7 − 12012x6 + 16632x5 − 11550x4 + 4200x3 − 756x2 + 56 ∗ x− 1
8 12870x8 − 51480x7 + 84084x6 − 72072x5 + 34650x4 − 9240x3 − 1260x2 − 70x+ 1
9 48620x9 − 218790x8 + 411840x7 − 420420x6 + 252252x5 − 90090x4 + 18480x3 − 1980x2+

90x− 1

These polynomials are also normalized at 1. The above definition is equivalent to

Ls
q(x) = (−1)q

q∑
k=0

(
q
k

)(
q + k
k

)
(−x)k. (A.3)

We form next Pq(x) = Ls
q(x) − Ls

q−1(x) and compute the roots of Pq(x) For instance,
consider P2(x) = 3x2 − 4x+ 1 and its roots, which are 1/3, 1. Then we have:

A = CV RV −1 =

[
1

1/3

] [
1 1/3
1 1

] [
1

1/2

] [
3/2 −1/2
−3/2 3/2

]
=

[
5/12 −1/12
3/4 1/4

]
28

In this paper, to generate the shifted Legendre polynomials we use the formula (A.3).
Based on (A.3), the IRK matrix Aq and its exact inverse can be computed exactly,

using symbolic computations, for instance till q = 12. We show below the matrices for
various q (in rational form):

A3 =

 445/2261 −112/1709 323/13588
764/1937 748/2561 −323/7774
1509/4009 903/1762 1/9

A−1

3 =

1277/396 995/852 −1960/7741
−710/199 683/881 1960/1861
2163/391 −2945/391 5

A4 =

246/2177 −73/1811 41/1589 −80/8077
409/1745 1795/8676 −67/1400 111/6917
239/1103 1101/2711 569/3010 −1227/50740
334/1515 217/559 293/891 1/16

A−1
4 =

2252/399 1031/536 −1654/2823 217/1248
−2565/508 1088/891 937/534 −2137/4915
4404/1261 −1287/323 551/868 2387/1310
−3891/562 277/42 −4394/361 17/2

A5 =

259/3548 −109/4077 131/7014 −31/2407 103/20425
167/1086 479/3276 −262/7189 83/3909 −68/8569
222/1585 1592/5325 517/3085 −244/7183 78/7127
315/2174 553/2000 245/752 407/3161 −117/7448
863/6005 83/295 2344/7517 253/1134 1/25

A−1
5 =

3695/422 1579/546 −589/673 271/678 −263/1967
−2485/347 1248/691 1345/569 −226/261 1347/4910
2362/573 −2257/502 1621/1892 3780/1501 −935/1423
−927/239 2874/847 −1157/223 415/714 1745/621
1489/177 −1875/269 1457/166 −2077/114 13

The roots for q = 9 are

0.017779915147363 0.091323607899794 0.214308479395631
0.371932164583272 0.545186684803427 0.713175242855569
0.855633742957854 0.955366044710030 1.000000000000000

and the matrices A9 and A
−1
9 are shown in Table 6. It is straightforward to check that the

row sum of the matrices is equal to the vector of the interpolation points.

29

B Appendix: Computing eigenvectors of lower-triangular

matrices

function [Lan,V] = Lower_trian_eigenvectors(L);

q = size(L,1);

V=eye(q,q);

for k=1:q

for l=k+1:q

for j=k:l-1

dd = 1/(L(l,l)-L(k,k));

if dd>0

V(l,k)=V(l,k)-L(l,j)*V(j,k)*dd;

else

V(l,k)=V(l,k)+L(l,j)*V(j,k)*(-dd);

end

end

end

end

30

A
9
=

 17
8/
78
11

−
31
/3
60
9

71
/1
10
06

−
59
/1
12
22

47
/1
07
09

−
59
/1
61
59

88
/2
99
27

−
15
0/
69
79
1

14
/1
63
01

36
5/
74
63

65
/1
28
2

−
71
/5
25
0

14
7/
15
96
2

−
16
3/
22
77
9

27
5/
47
84
9

−
36
/7
92
5

33
/1
00
36

−
89
/6
79
87

15
1/
34
52

28
7/
26
50

26
2/
35
93

−
95
/5
62
8

55
/5
13
8

−
49
/6
20
1

53
/8
84
6

−
57
/1
34
18

19
/1
13
22

45
5/
98
38

11
09
/1
14
85

47
2/
30
59

31
8/
36
67

−
28
1/
15
22
9

28
/2
53
7

−
15
2/
19
80
9

14
1/
26
96
9

−
11
/5
40
3

67
7/
15
10
0

10
2/
99
7

18
3/
13
24

32
7/
18
04

53
6/
59
27

−
45
2/
24
99
3

10
7/
10
49
7

−
74
/1
15
53

40
6/
16
72
73

49
8/
10
90
7

96
3/
97
13

31
7/
21
75

25
3/
15
46

11
88
/6
38
9

22
4/
26
79

−
18
3/
11
57
5

81
/9
95
3

−
63
/2
16
46

89
/1
96
9

18
9/
18
74

13
3/
93
7

67
5/
39
43

34
5/
20
32

53
3/
31
77

14
1/
21
02

−
12
6/
10
68
5

13
6/
37
68
1

21
7/
47
78

49
7/
49
67

61
9/
43
09

35
2/
20
95

22
7/
12
93

24
1/
15
46

57
1/
44
30

19
8/
46
25

−
89
/1
80
36

10
6/
23
37

14
5/
14
46

36
5/
25
49

55
5/
32
87

23
7/
13
61

25
3/
15
97

17
04
/1
37
87

33
2/
44
97

1/
81

A
−
1

9
=

 20
81
/7
4

39
43
/4
42

−
24
14
/9
27

67
3/
56
5

−
57
9/
86
3

50
2/
11
83

−
30
9/
10
88

32
3/
17
40

−
15
1/
21
32

−
10
57
/5
1

38
38
/7
01

37
93
/5
98

−
31
53
/1
37
6

97
8/
82
3

−
41
3/
57
1

26
1/
55
0

−
71
2/
23
19

46
7/
40
02

43
15
/4
34

−
88
6/
85

31
38
/1
34
5

23
48
/4
49

−
72
3/
34
6

10
46
/9
05

−
50
67
/6
98
9

43
0/
93
7

−
71
4/
41
27

−
25
77
/3
85

24
22
/4
37

−
93
9/
12
2

65
2/
48
5

14
96
/3
09

−
94
5/
46
1

11
86
/1
01
7

−
32
6/
46
1

55
9/
21
29

43
35
/8
09

−
35
01
/8
57

56
17
/1
28
5

−
22
57
/3
28

50
9/
55
5

21
96
7/
44
25

−
75
6/
34
9

85
5/
71
3

−
63
5/
14
69

13
45
5/
27
61

21
13
/5
91

−
14
08
/4
05

10
18
/2
43

−
27
91
/3
91

12
22
/1
74
3

70
87
/1
25
2

−
11
86
/4
87

19
57
/2
38
1

22
32
/4
45

−
79
0/
21
9

93
9/
28
0

−
15
21
/4
15

38
99
/8
14

−
15
54
7/
17
86

14
2/
24
3

48
99
/6
68

−
97
0/
47
9

−
12
44
/2
03

32
24
/7
39

−
29
72
/7
49

67
3/
16
2

−
14
92
9/
30
12

13
99
4/
19
99

−
14
12
/1
03

99
7/
19
05

45
85
/5
12

38
49
/2
63

−
38
92
/3
75

32
21
/3
44

−
16
51
/1
71

28
63
/2
56

−
13
31
/9
0

26
30
/1
11

−
63
34
/1
13

41

T
ab

le
6:

M
at
ri
ce
s
A

9
an

d
A

−
1

9

31

C Appendix: Briefly on the Generalized Locally Toeplitz

theory

For clarity of the presentation we include some details regarding the Generalized Locally
Toeplitz theory (GLT). Most discretization techniques used to approximate PDEs, such
as the Finite Difference method (FDM), the Finite Element method (FEM), the Isogeo-
metric Analysis (IgA) lead to sequences of sparse matrices that admit either Toeplitz or
(block) multilevel Toeplitz structure. As is well studied, under quite general assumptions,
sequences of (block) Toeplitz matrices can be associated with analytic functions, referred
to as ’matrix symbols’. The Generalized Locally Toeplitz theory broadens the applicability
of the matrix symbols in the cases for variable coefficients, non-uniform gridding and more.
Applying the theory of block multilevel Toeplitz matrix sequences could give additional
and deeper understanding of the spectral behavior of the so-arising large matrices, some
functions of these matrices and in particular, their preconditioned form, when analysing
the properties of various preconditioning techniques.

Five main features of the GLT class of matrices are most relevant and used in the
analysis of the preconditioned systems, considered in this paper. For details and historical
developments of the technique see [63, 64] and the references therein.

GLT1 Each GLT sequence has a symbol f . If the sequence is Hermitian then f describes
the asymptotic behaviour of its eigenvalues (up to a finite number of outliers). Other-
wise |f | = (f ∗f)1/2 describes the asymptotic behaviour of the singular values.

GLT2 The set of GLT sequences form a ∗-algebra (close under linear combinations, con-
jugation, products, inversion (whenever the symbol vanishes, at most, in a set of
zero Lebesgue measure)). Hence, the sequence obtained via algebraic operations on
a finite set of input GLT sequences is still a GLT sequence and its symbol is obtained
by the same algebraic manipulations on the corresponding symbols of the input GLT
sequences.

GLT3 Every Toeplitz sequence generated by a L1 function f is a GLT sequence and its
symbol is f , possessing the properties from in item GLT1.

GLT4 The approximation of PDEs with non-constant coefficients, general domains, nonuni-
form gridding by local methods (FDM, FEM, IgA etc), under very mild assumptions
leads also to GLT sequences.

GLT5 GLT structures are encountered for certain matrix sequences, related to precondi-
tioners, based on approximations of PDEs by local methods. Moreover, the symbol
includes information about the coefficients and the domain of the PDE, as well as in-
formation on the discretization schemes for the derivatives including the used meshes,
which have to be described, at least asymptotically, as a map of a reference equis-
paced mesh, developed for multi-dimensional settings. Furthermore, also in presence
of non-dominating advection terms the distribution result for the eigenvalues can be
recovered.

32

D Appendix: Eigenvalue examples

We include additional examples of eigenvalues of the preconditioned block system. Figures
3-4 illustrate the eigenvalues for nine different choices of τ for the four stage method,
the plots illustrate a typical behavior where the spectrum is close to one for small and
large values of τ while displaying a wider range in between. Note however that in observed
spectra the magnitude of complex part remains smaller than 0.2 while the real part remains
in the interval [0.6, 1.1]. For practical applications one may choose the value in τ such

Figure 3: Problem 1, q = 4: Eigenvalues of P−1A for various values of τ

that the time-error matches the spacial error. In [56] the relation

τ = h

p+ 1

2q − 1

is used. Here p denotes the degree of the Lagrange polynomial used in the discretization,
in all cases considered in this work we have p = 1. Using this choice of τ we plot the
eigenvalues of the preconditioned system for q = 1, 2, ..., 10. In Figures 5-6 we see how
both the real and complex ranges of eigenvalues increase with the number of stages.

33

Figure 4: Problem 1, q = 4: Eigenvalues of P−1A for various values of τ

34

Figure 5: Problem 1,τ = h

p+ 1

2q − 1 : Eigenvalues of P−1A for various values of q

35

Figure 6: Problem 1,τ = h

p+ 1

2q − 1 : Eigenvalues of P−1A for various values of q

36

