Technical reports from the Department of Information Technology

The following is an index of the Technical Report series from the Department of Information Technology at Uppsala University. This series has ISSN 1404-3203 (ISSN 1404-0603 up to and including nr 1999-006). The reports can be ordered from the Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden. Most of them are also available electronically from http://www.it.uu.se/research/publications/reports/.


3


[2018-008] Owe Axelsson, Maya Neytcheva and Anders Ström. An Efficient Preconditioning Method for State Box-Constrained Optimal Control Problems. March 2018. This is a major revision of Technical Report 2017-004. In the new version all the numerical experiments have been rerun with new much more efficient dynamic stopping criterias.


[2015-033] Volkan Cambazoglu, Ramūnas Gutkovas, Johannes Åman Pohjola and Björn Victor. *Modelling and Analysing a WSN Secure Aggregation Protocol: A Comparison of Languages and Tool Support*. November 2015. Updated 2015-12-02: The results in subsection 4.1.3 are updated because we realised that Pwb can evaluate the SHIA model faster for network sizes of 2 and 4, and also can handle network size of 8.


[2013-026] Sofia Cassel, Falk Howar, Bengt Jonsson, Maik Merten and Bernhard Steffen. *A Succinct Canonical Register Automaton Model*. December 2013. This is an extended version of a paper published in ATVA 2011. The extended version has been accepted for publication in JLP.


[2012-033] Per Pettersson, Gianluca Iaccarino and Jan Nordström. *A Stochastic Galerkin Method for the Euler Equations with Roe Variable Transformation*. November 2012. This is a complete rewrite of report nr 2012-021 with new results. A more general framework for the representation of uncertainty is used. All figures have been replaced and more numerical results have been added (methods of manufactured
solutions, convergence in space and the stochastic dimension for subsonic and supersonic flow).


[2010-021] Michael Thune and Anna Eckerdal. Students’ Conceptions of Computer Programming. September 2010. The phenomenographic outcome space presented in this report has previously been published as part of a journal article (Thune and Eckerdal 2009). Due to space limitations in the journal publication, we have found it appropriate to make available a more comprehensive description of the outcome space, in the present technical report.


45


