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Abstract

Using constraint programming, we effectively model and efficiently solve the problem of balancing
and minimising the traffic complexities of an airspace of adjacent sectors. The traffic complexity of
a sector is here defined in terms of the numbers of flights within it, near its border, and on non-level
segments within it. The allowed forms of complexity resolution are the changing of the take-off times
of not yet airborne flights, the changing of the remaining approach times into the chosen airspace
of already airborne flights by slowing down and speeding up within the two layers of feeder sectors
around that airspace, as well as the changing of the levels of passage over way-points in that airspace.
Experiments with actual European flight profiles obtained from the Central Flow Management Unit
(CFMU) show that these forms of complexity resolution can lead to significant complexity reductions
and rebalancing.

1 Introduction

The mission of the European Organisation for the Safety of Air Navigation (EuroControl) is to promote
the harmonisation of the different national air-traffic-management (ATM) systems and to lead the devel-
opment of the next-generation pan-European ATM system capable of handling the foreseen increase in
traffic demand. It is the counterpart of the Federal Aviation Administration (FAA) of the USA.

Today, the air-traffic control operation within any control centre rests on a division of the airspace
into sectors, that is three-dimensional, possibly concave polygonal regions of airspace that are stacked at
various altitudes. Because of this fragmented mode of operation, the capacity of a control centre is limited
by its sector with the minimum capacity. Indeed, controlling capacity is lost and the total capacity of
a control centre could be raised by an early identification of the traffic complexity bottleneck areas and
a reorganisation of the traffic patterns such that the traffic complexity is more evenly balanced between
its sectors. This has triggered the development of concepts dealing with multi-sector planning (MSP),
which is based on traffic complexity management (TCM) [8], where tools are developed to predict the
traffic complexity over several sectors and to manage their overall complexity by anticipating peaks and
proposing alternate plans. The traffic complexity of a sector is an estimate of the air-traffic controller
(ATC) workload of that sector. Here, it is defined in terms of the numbers of flights within it, near
its border, and on non-level segments within it. Indeed, each of these positions or segments of a flight
requires special attention and procedures to be followed by the ATC. See Section 2.1 for more details
on traffic complexity. The initial MSP TCM research and development activities at EuroControl have
focused on complexity measurement and complexity prediction [4, 5, 6].

*Currently on leave of absence at Sabanci University in Istanbul, Turkey.



This paper presents the first EuroControl research and development results on complexity resolution,
that is the dynamic modification of flight profiles in order to reduce the predicted complexities over a
given time interval of some sectors, thereby avoiding intolerable peaks of ATC workload, as well as, in
this multi-sector framework, to balance the complexities of several adjacent sectors, thereby avoiding
unacceptable dips of ATC workload and unfair discrepancies between ATC workloads in those sectors.
We are only interested here in en-route flights in the upper airspace that follow standard routes, rather
than performing free flight.

The tactical rolling-horizon scenario considered is as follows. At a given moment, suitably called now
below, the (human) complexity manager queries the predicted complexities for an airspace of several
adjacent sectors over a time interval that is some 20 to 90 minutes after now. Below a look-ahead of 20
minutes, there would not be enough time for the computation and implementation of the complexity-
resolved flight profiles. Beyond a look-ahead of 90 minutes, there is too much uncertainty in trajectory
prediction, and hence in complexity prediction. If there are ATC workload peaks, dips, or discrepancies
over some time sub-interval [mq, ..., ms] that warrant interference, then the complexity manager launches
some complexity resolution process that suitably changes the current flight profiles over that sub-interval,
whose length should be about 5 to 10 minutes. The average flight time through a European upper airspace
sector is about 8 minutes, hence the proposed resolution window of 5 to 10 minutes is a trade-off between
the calculation time required to find a reasonable resolution and the variability of complexity. Also, the
implementation of a resolution strategy will have an impact on the evolution of the predicted complexity
for later intervals. We thus came to the conclusion that a 5 to 10 minute interval may be a realistic value
to start with. A minimum fraction ff of the number of flights planned to be in the chosen multi-sector
airspace within [my, ..., ms] have to be there under the resolved flight profile as well. Indeed, complexity
resolution would otherwise just re-plan a maximum of flights to be outside all those chosen sectors, at
the expense of increased complexity in the adjacent sectors. This process is to be repeated around the
clock approximately every 10 minutes. For this to work, the time spent on computing and implementing
the complexity resolutions should not exceed those 10 minutes, and the implementation effort should be
offset by the resulting complexity reductions and rebalancing among sectors.

In this work, the allowed forms of complexity resolution are as follows, for a flight that eventually
enters the given airspace of adjacent sectors:

1. Changing the take-off time of a not yet airborne flight by an integer amount of minutes (not
seconds), within the range [—5,...,410]. Today, if the ATM system is overloaded, the Central
Flow Management Unit (CFMU) imposes slots on aircrafts of a 15 minute duration and with a
[—5,...,+10] minute distribution along the slot time. However, a finer definition of the departure
time within that slot allows a decrease in the predicted complexity peaks within the system. This
is a powerful and economic means to manage traffic complexity whilst staying within flow control
constraints.

2. Changing the remaining approach time into the chosen airspace of an already airborne flight by an
integer amount of minutes, but only within the two layers of feeder sectors around that airspace,
at a speed-up rate of maximum 1 minute per 20 minutes of approach time, and at a slow-down
rate of maximum 2 minutes per 20 minutes of approach time. (Precise definitions of the notions of
approach time and feeder sectors will be given in Section 2.2.) The present ATM system lets an
aircraft fly its preferred speeds during the cruise phase and most of the descent phase. Typically,
the first speed restriction for inbound flights happens below 10, 000 feet. There is quite some room
on long flights to change the speed of some aircrafts in order to achieve a different future traffic
distribution within sectors that will result in a lower traffic complexity. However, due to aircraft
aerodynamics and airline cost index management, the speed control range during the cruise phase
may be limited for long-haul flights but remains significant during the descent phase and interesting
during the climb phase.

3. Changing the altitude of passage over a point in the chosen airspace by an integer amount of flight
levels (hundreds of feet), within the range [—30, ..., +10], such that the flight climbs no more than
10 levels per minute, or descends no more than 30 levels per minute if it is a jet, and 10 levels per
minute if it is a turbo-prop. Aircrafts on crossing routes at the same level or in an overtake situation
on the same route contribute significantly to traffic complexity. Separating the aircrafts vertically at
an early stage may reduce drastically the traffic complexity perception of the controller by reducing
the amount of time he needs to monitor a given pair of aircrafts. This technique is already used
today to increase sector throughput and is named level capping. There are cost implications when



changing the cruise level of a flight, but this aspect can be taken into account by reducing the levels
of inbound flights before affecting outbound flights and overflights.

Many other forms of complexity resolution can of course be imagined, such as the horizontal re-profiling
along alternative routes (from a list of fixed or dynamically calculated routes), or the introduction of even
more time variables than just on the entry into the considered multi-sector airspace. Such additional
forms of complexity resolution should only be introduced if they are warranted by additional gains and
by computational feasibility.

The objective of the present work can now initially be stated as follows: Given a set S of adjacent
sectors, given moments now < mj < mg, and given a fraction ff, return a modification (according to
the allowed changes above) of the profiles of the N flights that are planned at now to be inside S within
the time interval [my, ..., ms] such that minimum ff - N of these flights are now planned to be inside S
within [my,...,mz] and such that the complexities of the sectors in S are minimised (and ideally better
balanced). In practice, an allocated amount timeQOut of computation time is also given, and we want the
best such flight profile changes that can be computed within timeQut seconds. This initial formulation
of the objective will be refined as we proceed in this paper.

Our assumptions and their justifications for realism and impact are as follows:

e We assume that times can be controlled with an accuracy of one minute. Indeed, the resolved
flight profiles may have new take-off times for some of the flights originally planned to take off
after now, or new approach times into the chosen airspace for flights already airborne at now,
and the rest of their profiles are shifted accordingly, but the computed optimal complexity only
holds if these resolved flight profiles are adhered to by the minute, which is a realistic accuracy
nowadays. Semantically, the two kinds of time changes amount to a change of the entry time of a
flight into the chosen airspace, in whose sectors the traffic complexities are actually balanced and
minimised. Outside that chosen airspace, the flight profiles are of course to be updated differently
according to the actual kind of time change, but our purpose here is only to measure the impacts
of time changes within that airspace. Consequently, we will from now on only talk about entry-
time changes. Although entry times are controlled with an accuracy of one minute, there are no
theoretical difficulties with switching to a more fine-grained control of entry times.

e We assume that the flight time along a segment does not change if we restrict the flight-level changes
over its end points to be “small”, as realistically constrained in the third form of resolution above.
Otherwise, we cannot shift the flight profile according to the new entry time and many more time
variables would be needed, leading to combinatorial explosion.

The main contributions of this paper are as follows:

e We use a more sophisticated notion of air-traffic complezity than just the number of flights in a
sector at a given moment, so that limiting the capacity of a sector is not just about limiting the
number of its flights.

e We introduce air-traffic complexity resolution (namely minimisation and balancing) in a multi-
sector-planning framework.

e We present the probably first constraint program for such an airspace planning purpose, previous
models being based on mathematical programming technology, such as [2, 10]. Tt is very efficient,
highly readable, and is to serve as an early prototype for further experiments as well as additions
and modifications of definitions and constraints. No claim is made that the designed program and
the chosen underlying optimisation technology are optimal.

The rest of this paper is organised as follows. In Section 2, we introduce the necessary background
information. In Section 3, we then design a constraint program modelling the complexity resolution
problem in a multi-sector-planning framework. In Section 4, we report on the experiments we made with
that program. Finally, in Section 5, we conclude, discuss related work, and outline future work.

2 Background

In Section 2.1, we define the air-traffic complexity of a sector as an estimate of the air-traffic-controller
(ATC) workload of that sector. Next, in Section 2.2, we define various concepts arising for the considered
forms of complexity resolution. In Section 2.3, we then recall the notion of Pareto optimisation. Finally,
in Section 2.4, we briefly discuss the essence of the constraint programming approach to modelling and
solving combinatorial problems.



2.1 Air-Traffic Complexity

Let us first summarise the findings of the previous research and development work at EuroControl (and
without our involvement) on air-traffic complexity measurement [4, 5, 6].

Definition 1 The complexity of a given sector s at a given moment m is based on the following terms:
e Traffic volume: Let Ny be the number of flights in s at m.

e Vertical state: Let N4 be the number of non-level (climbing or descending) flights in s at m. Indeed,
such flights need more ATC monitoring than level flights.

e Proximity to sector boundary: Let N, be the number of flights that are at most hys, = 15 nautical
miles (nm) horizontally or vy,sp = 40 flight levels (FL) vertically beyond their entry to s, or before
their exit from s, at m. Indeed, such flights require ATC interaction with the ATC of the previous
or next sector.

The moment complexity of sector s at moment m is a normalised weighted sum of these terms:
C(s,m) = (asec : Nsec + Aed * ch + Qnsh * anb) : Sno’r‘m (]-)

where the sector normalisation constant Sy, characterises the airspace structure, equipment used, pro-
cedures followed, etc, of s. This is to ensure that complexity values have a relatively consistent meaning
across a wide range of sectors.

The other parameters initially identified in [5], called ‘data-link equipage’ (indicating whether the
ground-air data-link is digital or not), ‘time adjustment’ (necessary if the specific flight has a time con-
straint that will require controller action), ‘temporary restriction’ (the proportion of the normal capacity
of the sector that is predicted to be available, considering the weather, equipment malfunction, military
use of shared airspace, etc), ‘potentially interacting pairs’ (the number of flights that will violate horizon-
tal or vertical separation constraints within the considered sector), and ‘aircraft type diversity’ (as the
diversity in aircraft types has an impact on the speeds they fly, the levels they use, and the rates at which
they change altitude, and thus introduces additional complexity by requiring more monitoring), are not
used here. Indeed, the ‘data-link equipage’, ‘time adjustment’, and ‘temporary restriction’ parameters,
though probably relevant, were not used in the study [6] that determined the weights and normalisation
constants for the sectors of the multi-sector airspace considered in our experiments of Section 4, and
this simply because there were no data to quantify the weights affecting them. Also, the ‘potentially
interacting pairs’ parameter was used in [6], but (somewhat surprisingly) did not show a good correlation
with the complexity value, as estimated by the COCA metric [7]. This has been explained by the fact
that the ‘traffic volume’ and ‘vertical state’ parameters already capture this impact [6]. Finally, the ‘air-
craft type diversity’ parameter was also used in [6], but also showed a poor correlation with the COCA
complexity value, but this may be due to the limited amount of data used in the determination of the
weights [6]. The resulting air-traffic complexity measure is maybe simple, but it correlates with a model
of (European) ATC workload and yet it has more parameters than other such metrics actually deployed
so far for complexity resolution [2, 10]. See Section 5 for a comparison with this related work.

However, as already observed in [6], moment complexity follows has a large variance, with steep rises
and falls within just seconds. See the curve for k = 0 in Figure 1 (the parameter k will be explained
in Definition 2 below), where the x axis is the number of seconds after 11:10 on 23 June 2004, and
the y axis is the planned complexity for sector EBMALNL. In order to reduce the probability that the
complexity-resolved flight profile just falls into a dip of such a curve, we should define complexity so that
its curve follows a smoother pattern. This can be achieved by a windows averaging technique, namely
defining complexity over a given time interval rather than for a specific moment.

Definition 2 The interval complexity of a given sector s over a given time interval [m,...,m+k- L] is
the average of the moment complexities of s at the k + 1 sampled moments m +i- L, for 0 <1i < k:

k .
Cls,m, b 1) = Zim0 E 0 L) @)

where k is called the smoothing degree, and L the time step between the sampled moments.
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Figure 1: Planned complexity after 11:10 on 23 June 2004 in sector EBMALNL

Note that interval complexity reduces to moment complexity when k& = 0, with the value of L being
irrelevant in that case. From now on, all references to complexity are about interval complexity.

For the sake of complexity resolution, our experimentally determined good values of the parameters
are k = 2 with L = 210 seconds, meaning that there are three sampled moments (namely m, m + 210,
and m +420), spanning a time interval of seven minutes. Under such values, interval complexity (plotted
here for the start moment m) follows a much smoother curve than moment complexity, as seen in the
curves for k > 0 in Figure 1. Any value k > 2 does not lead to any further significant smoothening (and
would lead to impractically long computation times).

Any value of k - L very different from 420 seconds is not in tune with the average time flights spend
on a given segment (within the airspace considered in our experiments of Section 4). Consider how the
third form of complexity resolution works, in isolation from the other two forms, referring to Figure 2.
For every point p; on the planned route (drawn as a plain line) for a given flight f within the chosen
airspace, there is a maximal range [—30,...,+10], denoted by a dashed vertical double arrow, of flight
levels by which the altitude of passage of f over p; can be changed, depending on the engine type of f
and the distances to the previous point p;—; and next point p;11, if any. Suppose, for k = 2, that the
three sampled moments m, m + L, and m + 2L fall as indicated on the horizontal time axis, namely
on a climbing segment [ps,ps], on a level segment [ps,ps], and on another climbing segment [p4,ps],
respectively. Complexity resolution tries to level off the other two climbing segments, by making already
[p1,p2] reach the level h of [pa,ps], or by making [ps,pg] start only from h, if not by lowering or raising
h for as many as possible of the points ps to ps, depending on the lengths of [p1,p2] and [ps, ps]. Indeed,
the sum of the N4 terms for the involved sectors would then decrease by the number of these steeper
climbs that are compatible with the climbing performance of f. The dot-dashed alternative route in the
figure assumes that both sampled climbing segments could be levelled off. Now, if L is too small, then
several sampled moments might fall onto the same non-level segment, thereby making a single change
achieve a lot of complexity reduction. Conversely, if L is too large, then the sampled complexity values
concern segments that are too far apart for their average to be meaningful.

2.2 Feeder Sectors and Approach Times

The second considered form of complexity resolution is the slowing down and speeding up of already
airborne flights, but only within the two layers of sectors around the chosen multi-sector airspace, so as
to delay or advance their entries into that airspace. We call those surrounding sectors the feeder sectors.

Definition 3 A feeder sector s of a flight f is a sector that is a neighbour of a sector of the chosen
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Figure 2: Planned profile (plain line) and resolved profile (dot-dashed line) that minimises the number
of climbing segments for a flight at the three sampled moments m, m+L, and m+2L.

airspace, or a neighbour of a meighbour of such a sector, such that f is planned to fly through s before
entering that chosen airspace.

Essentially, the time still to be spent in the feeder sectors is called the approach time, defined next.

Definition 4 For a given moment, called now, the approach time of a flight f that has taken off at or
before now but that has not yet entered the chosen airspace is the duration that f is planned to fly within
its feeder sectors between mnow and its entry into the chosen airspace. If f has not yet entered its feeder
sectors at time now, then the approach time of f is the entire planned duration of flight within its feeder
sectors; otherwise, the approach time of f is the remaining duration of flight within its feeder sectors.
Formally, if a flight f with take-off time f.timeTakeOff is planned to enter the chosen airspace at time
tclf] and its first feeder sector at time tp([f] < tc[f] such that f.timeTakeOff < now < tc[f], then the
approach time of f is

alf] = to[f] — max(now, tr[f]). (3)

The restriction to two layers of feeder sectors around the chosen airspace aims at propagating only a
reasonable number of updates to the upstream air-traffic control centres for each updated flight profile,
as well as at leaving sufficient time to implement those updates. Note that the actual complexity will
be measured over a time interval [m,...,m + k- L], with now < m. Furthermore, there is too much
uncertainty involved to propagate changes more than two sectors upstream and still hope the new entry
time into the chosen airspace will actually be as intended. Finally, at the moment, there is no practical
way for an ATC centre to modify a flight long before it reaches its own airspace.

2.3 Pareto Optimisation

Essentially, we are dealing with a multi-objective minimisation problem. We are given a number of sectors
$1,82,...,8, and wish to minimise the vector of their complexities with respect to a resolution R:

(Cr(s1,m,k,L),...,Cr(sn,m,k, L))

Pareto efficiency is a concept that originates from economics but is now a widely used concept for multi-
objective minimisation problems within engineering. A vector of complexities is said to be Pareto optimal,
or Pareto efficient, if no element can be made less complex without making some other element more
complex. More formally, a vector

<CR* (817m7 ]f, L), ey CR* (Snvmv k? L)>



is Pareto optimal for a resolution R* if and only if there is no resolution R such that for all j we have
OR(8j7 m, ka L) S CR* (sjv m, k7 L)

but for some j we have
Cr(sj,m,k,L) < Cr+(s;,m,k,L).

In general, there is more than one Pareto-optimal solution to a problem.
One of the standard techniques for solving Pareto optimisation problems is by combining the multiple
objectives into a single objective using a weighted sum:

Zai : CR(S’i7ma k7L)

i=1

for some weights «; > 0. Minimising the weighted sum produces a solution that is Pareto optimal.
Different weights «; produce different Pareto-optimal solutions with different tradeoffs. In practice, one
often takes a; = 1. Although the weighted sum only guarantees to minimise convex parts of the set of
Pareto-optimal points, in practice non-convex sets are seldom found. Further, in this work, we are only
interested in a resolution that reduces complexity, but not in the structure of the set of Pareto-optimal
points, therefore any Pareto-minimal resolution is sufficient.

We have experimented with other Pareto weights and with other (non-Pareto) optimisation criteria
as well, such as minimising the worst resolved complexity among the sectors of the chosen airspace, or
minimising the worst discrepancy among the resolved complexities of the sectors of the chosen airspace.
However, the results were not as good, including often a poorer balancing of the resolved complexities
across those sectors, or even took much more computation time to get.

2.4 Constraint Programming

Constraint programming (CP) is a recent technology, offering a set of methods and tools for modelling
and solving constraint problems [1]. Constraint programming originated in the late 1980s from artificial
intelligence and computer science. Its solution methods are orthogonal but complementary to those of
other technologies, such as mathematical programming (MP), which originated from operations research
in the 1950s. In some cases CP has produced better solutions and has been quicker, while in other cases
MP was better or a cooperation of CP and MP gave the best results [3, 12].

A constraint problem has a set of variables, each with a specified domain of possible values, together
with a set of constraints (or relations over these variables) that restrict the possible combinations of
values for these variables, and optionally an objective function over these variables whose value is to be
optimised. Many problems can be modelled as constraint problems, such as problems in configuration,
control, design, diagnostic, finance, logistics, resource allocation, scheduling, and the natural sciences.

The task of a constraint solver is to find, if possible, a value for each variable within its domain such
that every constraint is satisfied, and, in the case of a constraint optimisation problem, such that the
value of the objective function is optimised. A constraint solver works by a combination of propagation
and backtrack search, while using heuristics to guide the search. Propagation is an operation that is
local to a particular constraint and takes the current domains of its variables and removes (in polynomial
time in the number of variables and their domain sizes) some, but not necessarily all, values that cannot
possibly participate in any solution to the considered constraint. This achieves some desired form of
local consistency on the variables of the considered constraint, such as hyper-arc consistency (the domain
of the considered variable is a set and, for every value, there is a tuple of domain values for the other
variables such that the considered constraint holds) or bounds consistency (the domain of the considered
variable is an interval and, for the smallest and largest values only, there is a tuple of domain values for
the other variables such that the considered constraint holds). The removed values are restored upon
backtracking. When all initial propagation has been done, and until global consistency has been achieved
on the conjunction of all the constraints, the solver iteratively searches the remaining search tree by first
heuristically making a decision, such as assigning to some variable a value within its current domain, and
then invoking propagation in the presence of this new constraint.

Industry-strength CP environments (such as the commercial CHIP, ILOG OPL, ILOG Solver, and
SICStus Prolog, or the open-source Choco, ECLiPSe, and Gecode) offer very rich modelling languages
and search languages. In particular, the constraints are not limited to some form, such as the linear in-
equalities of MP, and can be expressed in terms of powerful primitive constraints, including the so-called
global constraints, for which effective polynomial-time propagation algorithms have been designed. The



prototypical global constraint is allDifferent(x1, ..., x,), which requires the variables x1, ...z, to take
different values; achieving arc consistency for this global constraint is more efficient and prunes many
more values than achieving arc consistency for the equivalent conjunction of @ binary inequality
constraints. A constraint problem is thus essentially modelled as a logical combination of (global) con-
straints, whose polynomial-time propagation algorithms combine in practice very well to address the
usually NP-complete nature of the underlying problem. In consequence, constraint models are often very
close to the intuitive statement of the problem, in the sense that many variables correspond directly to
features of the problem and that the constraints naturally model the relationships between those fea-
tures. This simplifies the design and maintenance of the model, the interpretation of solutions, and the
choice of adequate heuristics, based on the modeller’s domain knowledge or preferences. There is a clean
separation of the problem model from the solution process, hence changes to either of those can easily
be incorporated. Finally, modern CP environments offer explanation facilities, so as to explain why a
particular solution, or no solution, was found.

3 The Constraint Program

A constraint optimisation program starts with the declarations of the inputs — called the instance data,
as they give a particular instance of a general constraint problem — and outputs — called the wvariables,
as a decision has to be made for each of them about which value it takes within its domain. Then comes
the objective, which consists of an expression — called the objective function — that has to be optimised
and some conditions — called the constraints — subject to which the optimisation takes place. Finally,
there is an optional user-defined procedure — called the search procedure — that indicates under what
ordering heuristics the search tree shall be explored when propagation has reached its fix-point and before
the default search procedure of the constraint solver takes over.

3.1 The Instance Data
The parameters of the constraint program are as follows:

e mazFarly is the maximum non-negative-integer amount of minutes that a flight can take off before
its planned time; a typical value is 5.

e mazxLate is the maximum non-negative-integer amount of minutes that a flight can take off after
its planned time; a typical value is 10.

e mazSlowDown is the maximum non-negative-integer amount of minutes per 20 minutes of flight
that an airborne flight can be slowed down; a typical value is 2.

e mazSpeedUp is the maximum non-negative-integer amount of minutes per 20 minutes of flight that
an airborne flight can be speeded up; a typical value is 1.

e mazDownJet is the maximum non-negative-integer amount of flight levels that a jet can descend
per minute; a typical value is 30.

e mazrDownTurbo is the maximum non-negative-integer amount of flight levels that a turbo-prop can
descend per minute; a typical value is 10.

e mazrDown is the maximum non-negative-integer amount of flight levels by which the altitude of
a flight over a point can be decreased, even if a larger decrease is allowed by the previous two
parameters, since we do not want to allow too radical changes of flight profiles; a typical value is
30.

e mazxUpJet is the maximum non-negative-integer amount of flight levels that a jet can climb per
minute; a typical value is 10.

e mazxUpTurbo is the maximum non-negative-integer amount of flight levels that a turbo-prop can
climb per minute; a typical value is 10.

e mazUp is the maximum non-negative-integer amount of flight levels by which the altitude of a flight
over a point can be increased, even if a larger increase is allowed by the previous two parameters,
since we do not want to allow too radical changes of flight profiles; a typical value is 10.



lookahead is a non-negative-integer amount of minutes; a typical value is a multiple of 10 in the
range [20,...,90].

nowHM is the time, given as an (hour, minute) pair, at which a resolved scenario is wanted with a
forecast of lookahead minutes.
Let

now = nowHM

and
m = nowHM -+ lookahead

be both expressed as the number of seconds since 00:00 of the first day of the traffic sample. Observe
that now < m.

k is the smoothing degree, that is the number of time steps into the future from m where the
(original) complexity of the considered sector is measured; a good value is 2.

L is the length, in seconds, of those time steps; a good value for complexity resolution is 200.

ff is the minimum fraction of the sum of the numbers of flights planned to be in the chosen multi-
sector airspace at the sampled moments m + ¢ - L, for all 0 < ¢ < k, that have to be there in the
resolved flight profile as well.

timeOut is the maximal non-negative-integer amount of seconds that should be spent on computa-
tions before returning the currently best feasible solution.

The constants used by the constraint program are as follows:

OurSectors is the set of identifiers of the sectors of the chosen airspace.
AllSectors is OurSectors plus the set of identifiers of the feeder sectors.
Engine is the set of chosen engine types.

Sector is a 1d array of (bottomFL, topFL, asec, Ged, Gnsh, Snorm ) tuples, indexed by AllSectors, such
that the sector Sector[s| stretches vertically between flight levels bottomFL and topFL, and has its
complexity parameterised by asec, Ged, Ansp, and Spoprm.-

hvpsp = 120 is the maximal number of seconds of flight a flight must be horizontally or vertically
beyond the entry to, or before the exit from, a sector s in order to qualify for being near the sector
boundary of s. See the comments before the constraint (17) below for more information.

Raw CFMU (Central Flow Management Unit) flight profiles do not contain all the sector coordination
(entry and exit) points of all the flights. As we would otherwise not be able to measure accurately
any term of the moment-complexity expression (1), the raw CFMU flight profiles were first extended by
EuroControl DAP/DIA and then processed into four data structures and three constants:

Flights is the set of all relevant flights, given as (flightld, engine Type, timeTakeOff) triples, that is
the flights that are planned to be in one of the chosen sectors at a sampled moment m + i - L, for
some 0 < i < k.

Let n = |Flights|. For the rest of the program to make sense, we must have n > 0.

Let N be the sum of the numbers of flights that are planned to be in one of the chosen sectors at
the sampled moments m + i - L, for all 0 < i < k.

SectorFlights is a 1d array of subsets of Flights, indexed by AllSectors, such that SectorFlights[s]
is the set of relevant flights that are planned to be in s at time m.

FlightPoints is the set of all relevant flight-point pairs, given as (flightld, pointld, timeQuver, level)
tuples, that is the points flown over by one of the relevant flights in one of the chosen sectors. Note
that the sector identifier is not part of the identifier of a flight-point pair; otherwise, some sector
entry or exit points would appear twice in FlightPoints.

Let g = |FlightPoints|. For the rest of the program to make sense, we must have ¢ > 0.



e Profile is a 2d array of subsets of FlightPoints, indexed by AllSectors and Flights, such that
Profile[s, f] gives the point profile of relevant flight f in sector s. Observe that the first element in
Profile[s, f], denoted by first(Profile[s, f]), designates the entry of flight f into sector s, and that
its last element, denoted by last(Profile[s, f]), designates the exit of f from s.

where engineType € Engine, flightld and level are integers, pointld is a string, and timeTakeOff and
timeQver are not given as dd/mm/yyyy hh:mm:ss but expressed as the number of seconds since 00:00 of
the first day of the traffic sample.

We use the dot notation from object-oriented programming for designating a field of a tuple. For
instance, f.timeTakeOff designates the planned take-off time of flight f, while first(Profile[s, f]).timeOQver
designates the entry time of flight f into sector s.

3.2 The Variables

Let
AT = [-mazEarly - 60, ..., +mazLate - 60]

be the integer range of take-off-time changes, expressed in multiples of 60 seconds, i.e., minutes.
Let
AH = [-mazDouwn, ..., +mazUp)

be the integer range of flight-level changes, expressed in flight levels.
Let
Index = [0,. .., k]

be the integer range of moment indices.

Let
Feount =[0,...,n]
be the integer range of numbers of flights.
Finally, let
Bool = [0, 1]

be the integer range of Booleans, such that 1 represents truth and 0 represents falsity.
The variables of our constraint program and their domains are as follows:

e 0T is a 1d array of n integer variables for entry-time changes, indexed by Flights.
e 0H is a 1d array of ¢ integer variables for flight-level changes in AH, indexed by FlightPoints.

e N, is a 2d array of integer variables in Fcount, indexed by Index and OQOurSectors, such that
Niecli, 8] is the number of flights in sector s at moment m + i - L when the entry-time changes are
as in 07

e N.qis a2d array of integer variables in Fcount, indexed by Index and OurSectors, such that N4i, s]
is the number of flights on non-level segments in sector s at moment m + i - L when the entry-time
and flight-level changes are as in 67 and dH.

e N, is a 2d array of integer variables in Fcount, indexed by Inder and QurSectors, such that
Npspli, s] is the number of flights near the boundary of sector s at moment m + i - L when the
entry-time changes are as in 67

o complexity is a 2d array of integer variables, indexed by Index and OurSectors, such that complezity[i, s]
is the moment complexity of sector s at moment m + 4 - L.

o complexitySum is a 1d array of integer variables, indexed by OurSectors, such that complezitySum|s]
is the sum of the moment complexities of sector s at the moments m + i - L, for each ¢ € Index.
By formula (2) in Definition 2, it suffices to divide complexitySum[s] by k + 1 to get the interval
complexity of s over the time interval [m,...,m + k- L]. We postpone this division until display
time, as constraint reasoning is faster on integers than floats. Indeed, the objective function to be
minimised (see Section 3.4) is the sum of the interval complexities of all the chosen sectors, and it
suffices to minimise the sum of those values before that division, as k + 1 is a constant.
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3.3 The Constraints

All relevant flights planned to take off at or before now have taken off exactly according to their profile,
but their approach times (within the feeder sectors) can be modified. All other relevant flights can
necessarily only be changed to take off after now. To formalise all this, let tc[f] be the time flight f was
originally planned to enter the chosen airspace:

to [f] = MinsG OurSectors: Profile[s, f]#0 ﬁr’st(Proﬁle [3, f]).timeOveT

Also, let tp[f] be the time flight f was originally planned to enter its first feeder sector:

tF[f] = MinseAllSectors:Proﬁle[s,f]#@ ﬁrst(Proﬁle [57 f]).timeOver

Finally, let a[f] be the approach time of a flight f with f.timeTakeOff < now < to[f]. As already stated
by formula (3) in Definition 4, we have:

alf] = te[f] — max(now, tp[f])
Formally, the constraint above now becomes:

Vf € Flights .

if f.timeTakeOff < now

then if now < te[f]
then — maxSpeedUp - % < 0T|[f] < mazSlowDown - %
else 0T[f] =0

else 0T[f] € AT A f.timeTakeOff + 0T[f] > now

Flight-point pairs flown over at or before now can (currently) not have their flight levels changed:
Vp € FlightPoints : p.timeOver < now . 0H[p] =0 (5)

Changed flight levels stay within the bounds of the sector, as flights cannot be re-routed through a lower
or higher sector:

Vs € QurSectors . Vf € SectorFlights[s] . Vp € Profile[s, f] . (6)
Sector]s].bottomFL < p.level + 6 H[p] < Sector[s].topFL

The next three constraints define the Nge.[i, s], Nedli, s], and Nygpli, s] variables. A flight segment is
considered open at its target-point: a flight that is exactly over a point p is considered to be on the
segment starting at p, rather than on the segment ending at p, or even on both. This implies that
such a flight is only counted once within N4 if both involved segments are non-level. Proximity to a
sector boundary is approximated by being at most hv,s, = 120 seconds of flight beyond the entry to, or
before the exit from, the sector, while still being in that sector. This approximation [5] only holds for
en-route airspace, which is the case here. Recall that the first element in Profile[s, f] denotes the entry
of flight f into sector s, and that its last element denotes the exit of f from s. Also, let p’ designate
Profile[s, f].next(p), that is the element after p in the profile of flight f in sector s:

Vi € Index . Vs € OurSectors .
Nyeoliy 8] = Hf € SectorFlights]s] first(Profile[s, f]).timeOver < m+i-L — §T[f] } (7)

< last(Profile[s, f]).timeOver

Vi € Index . Vs € OurSectors .

Jp € Profilels, f] : p # last(Profile[s, f]) . (8)

Negli, s] = |{ f € SectorFlights[s]| p.timeOver < m+1i-L — §T[f] < p'.timeOverA
p.level + 6H[p] # p'.level + H[p']

Vi € Index . Vs € OurSectors .
0 <m+i-L— (first(Profile[s, f]).timeOver 4+ 6T|f]) < hvnsp
A m+i- L < last(Profile[s, f]).timeOver + T f]
Nusoli, s] = | f € SectorFlights|s] v
0 < last(Profile[s, f]).timeOver + T [f] — (m+i- L) < hvpg
A first(Profile[s, f]).timeOver + 6T[f] <m+1i-L
(9)
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As usual, logical conjunction (A) has higher precedence than logical disjunction (V).
No flight has to climb more than mazUpJet or maxzUpTurbo levels per minute or descend more than
mazDownJet or maxDown Turbo levels per minute:

Vs € OurSectors . Vf € SectorFlights[s| . Vp € Profile[s, f] : f.engineType = jet A p # last(Profile[s, f]) .
—(p'.timeOver — p.timeOver) - mazDownJet < ((p'.level + §H[p']) — (p.level + §H[p])) - 60
< (p'.timeOver — p.timeOQver) - maxUpJet
A\
Vs € OurSectors . Vf € SectorFlights[s] . Vp € Profile[s, f] : f.engineType = turbo A p # last(Profile[s, f]) .
—(p'.timeOver — p.timeOver) - mazDown Turbo < ((p.level + dH[p']) — (p.level + 6H|[p])) - 60
< (p'.timeOver — p.timeOver) - maxUp Turbo

(10)
A fraction of minimum ff of the sum N of the numbers of flights that are planned to be in one of the

chosen sectors at the sampled moments m + ¢ - L must remain in one of the chosen sectors:

> > Nueeliss] = [ff - N1 (11)

i€ Index s€ OurSectors

The next constraint defines the complexityli, s] values:

Vi € Index . Vs € OurSectors . complexityli, s| =

(Sector(s].asec - Nseclt, 8] + Sector[s].acq - Nedli, 8] + Sector[s].ansy - Npslt, s]) - Sector[s].Snorm (12)
Finally, the last constraint defines the complezitySum][s] values:
Vs € OurSectors . complexitySum|s] = Z complezityli, s] (13)

i€Index

3.4 The Objective Function

The chosen objective function corresponds to a Pareto optimisation with unit weights: we minimise the
sum of the interval complexities of the chosen sectors. Formally, it suffices to minimise the following
expression:

Z complexitySum/s] (14)

s€ OurSectors

if we divide its value by k + 1 before displaying it, as explained near the end of Section 3.2.

The discussed constraints and objective function are a faithful formalisation, in a first-order logic, of
how to balance and minimise the complexities of a set of chosen sectors over a given time interval. Note
that, as argued in Section 2.4, many variables correspond directly to features of the problem and that
the constraints naturally model the relationships between those features.

3.5 Refinement of the Variables and Constraints

In practice, a much better propagation and thus a much faster computation are achieved if we introduce
the following additional variables:!

® b is a 3d array, indexed by Index, OurSectors, and Flights, of integer variables in Bool, such that
bsecli, s, f] = 1 if flight f is in sector s at moment m + ¢ - L when its entry-time change is 67'[f].

e b.q is a 3d array, indexed by Index, OurSectors, and Flights, of integer variables in Bool, such that
beali, s, f] = 1 if flight f is on a non-level segment in sector s at moment m+i- L when its entry-time
change is 0T[f] and the flight-level changes are as in §H.

e b, is a 3d array, indexed by Indez, OurSectors and Flights, of integer variables in Bool, such that
busbli, s, f] = 1 if flight f is near the boundary of sector s at moment m + i - L when its entry-time
change is 0T[f].

1The reader may safely skip this sub-section.
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The following three additional constraints then define these new variables:

Vi € Index . Vs € OurSectors . ¥ f € Flights .
if f € SectorFlights|s]

then bsecli, s, f] =1«
else bgecli, s, f] =0

first(Profile[s, f]).timeOver < m+i- L — 0T[f] (15)
< last(Profile[s, f]).timeOQver

Vi € Index . Vs € OurSectors . Vf € Flights .
if f € SectorFlights[s]

dp € Profilels, f] : p # last(Profile]s, f]) .

then beqli, s, f]=1< | p.timeOver < m+i-L — 0T[f] < p’.timeOverA (16)
p.level + §H[p| # p'.level + §H|[p']
else begli, s, f1 =0
Vi € Index . Vs € OurSectors . Vf € Flights .
if f € SectorFlights[s]
0 <m—+i-L— (first(Profile[s, f]).timeOver + §T[f]) < hvpsp
A m+i- L < last(Profile[s, f]).timeOver + §T[f] (17)

then byspli, s, f] =1« vV
0 < last(Profile[s, f]).timeOver + 6T [f] — (m +1i- L) < hvpg
A first(Profile[s, f]).timeOver + 6T[f] <m+1i- L
else bpspli, s, f] =0

while the next three constraints then replace the constraints (7) to (9) in order to re-define the Ni.[¢, 5],
Neali, ], and N,spli, s] variables in terms of these new variables:

Vi € Index . Vs € OurSectors . Nsecli, 8] = Z bsecli, s, f] (18)
f€SectorFlights|s)

Vi € Index . Vs € OurSectors . Negli, s] = Z beali, s, f] (19)
fE€SectorFlights|s]

Vi € Index . Vs € OurSectors . Nyspli, s] = Z brsblt, S, f] (20)
fE€SectorFlights|s]

The next three additional constraints provide the increased propagation, as we can now express useful
implied constraints. They respectively state that a climbing or descending flight in a sector is necessarily
in that sector, that a flight near the boundary of a sector is necessarily in that sector, and that a flight
in a sector cannot simultaneously be in any other sector:

Vi € Index . Vs € OurSectors . Vf € SectorFlights[s] . beqli, s, f] =1 — bgecli, s, f] =1 (21)

Vi € Index . Vs € OurSectors . Vf € SectorFlights[s] . bpsp[t, S, f] = 1 — bseelt, s, f] =1 (22)
Vi € Index . Vf € Flights . Y becli,s, f] <1 (23)

s€ OurSectors

For n relevant flights, ¢ relevant flight-point pairs, s sectors, and I = |Index| = k + 1 sampled moments,
there are then a total of (3-s-T+1)-n+qg+(4-1+1)-s=0(n+ q) integer variables and at most
3-(s+1)-I'n+3-g+4-I+1)-s+1=0(n+ q) unquantified constraints. No global constraints are
used in this model.

3.6 The Search Procedure and Heuristics

Our experimentally determined search procedure is given in Algorithm 1. First, it consecutively tries to
label, for each chosen sector s € QurSectors, for each sampled moment index i € Index, and for each
relevant flight f € SectorFlights[s], the bsec[i, s, f1, beali, 8, f], and busp[i, s, f] variables, trying the value 1
before the value 0 (this is the right-to-left value ordering heuristic) for the former, and the value 0 before
the value 1 (left-to-right value ordering) for the latter two. This means that the priority goes to placing
f within s at m + ¢ - L, but neither on a non-level segment nor near the boundary of s. These value
orderings make sense because ff is usually close to 100%, hence most of the flights need to be placed
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Algorithm 1 Search procedure with variable and value ordering heuristics

for all s € OurSectors, ordered by decreasing |SectorFlights[s]| do
for all i € Index do
for all f € SectorFlights[s] do
try bsecli, s, f] = 1| bsee[iy s, f] = 0 end try
tI‘y bcd[i7sa f] =0 | bcd[ias,f] =1end tI‘y
tI‘y bnsb[iasvf] =0 | bnsb[iv&f] =1end tI‘y
end for
end for
end for
for all f € Flights do
try all d € AT, ordered by increasing |d| : 0T[f] = d end try all
end for
for all p € FlightPoints do
try all d € AH, ordered by increasing |d| : 0H[p] = d end try all
end for

somewhere in our multi-sector airspace. The order of consideration of the sectors s is by decreasing
size of SectorFlights[s], so as to begin with the sectors that are planned to be the most busy (this is a
variable ordering heuristic). This propagates very well to the other bs..[i, s, f] variables, via the implied
constraint (23), and from there to the other b.4[i, s, f] and b,spi, s, f] variables, via the contrapositives of
the implied constraints (21) and (22), as well as to the 67" variables (whose domains are already shrunk
by the constraint (4)) and to the 6 H variables (whose domains are already shrunk by the constraints (5),
(6), and (10)), via the constraints (15), (16), and (17).

Next, our search procedure labels the §T" variables, using a value ordering by increasing absolute value
among the remaining values within the AT range. Finally, it labels the § H variables, again using a value
ordering by increasing absolute value among the remaining values within the AH range. This guarantees
revised flight profiles that deviate as little as possible from the original ones.

Eventually, this fixes the remaining functionally dependent variables, via the constraints (18), (19),
(20), (11), (12), and (13). The minimisation objective (14) is automatically performed by the constraint
solver using a branch-and-bound scheme.

This search procedure turns out to be sufficiently efficient, even if stopped after just two minutes
(see the experiments in Section 4 below). If allocated enough time, it (or any variation thereof) will
eventually compute the optimal resolved flight plan, since complete search is performed, modulo the
pruning achieved by propagation.

3.7 Implementation

The constraint program was implemented in OPL, the Optimisation Programming Language [11, 12]. See
http://www.ilog.com/products/oplstudio/ for more information.

Translating the designed constraint program into an OPL model is merely a matter of slight syntax
changes, without remodelling any of the logical connectives used.? For instance, the constraints (15)
and (17) become the following so-called reification constraints, which are both non-linear:

forall(i in Index, s in OurSectors, f in Flights)
if f in SectorFlights[s]
then b_sec[i,s,f] = (Profilel[s,f].first().timeOver
<=m + i * L - deltaT[f]
< Profilel[s,f].last().timeOver)
else b_sec[i,s,f] =0
endif ;

and

forall(i in Index, s in OurSectors, f in Flights)
if f in SectorFlights[s]
then b_nsbli,s,f] = (0 <=m + i * L - (Profilel[s,f].first().timeOver + deltaT[f])

2The reader may safely skip the rest of this sub-section.
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<= hv_nsb
&
m+ i*xL
< Profile[s,f].last().timeOver + deltaT[f]

\/

0 < Profilels,f].last().timeOver + deltaT[f] - (m + i * L)
<= hv_nsb

&

Profile[s,f].first().timeOver + deltaT[f]
<=m+ i *x L)
else b_nsb[i,s,f] =0
endif ;

where the parentheses around the right-hand argument of the equality in the then block typecast that
formula into the integer 1 if that formula is true, and into the integer 0 otherwise.

Note how the logical conjunctions and disjunctions are literally preserved. The same holds for logical
implication. For instance, the constraint (21) becomes the following so-called channelling constraint,
which is non-linear:

forall(i in Index, s in OurSectors, f in SectorFlights[s])
b_cd[i,s,f] =1 => b_secl[i,s,f] =1 ;

A linear, but less readable, formulation of this constraint is as follows, without any difference in perfor-
mance:

forall(i in Index, s in OurSectors, f in SectorFlights[s])
b_cd[i,s,f] <= b_secli,s,f] ;

Note that “=>” stands for the left-to-right logical implication (—), while “<=" stands for the less-than-
or-equal comparison relation (<) and not for the right-to-left logical implication ().
Since there is no existential quantifier in OPL, an existential quantification of a formula 3 over a set
S filtered by a condition «
FieS:al). B3)

becomes a sum of integer truth values that is constrained to be positive:
sum(i in S : a(i)) (BE)) > 0

where the parentheses around F(i) typecast that formula into the integer 1 if that formula is true, and
into the integer 0 otherwise. For instance, the constraint (16) becomes another non-linear reification
constraint:

forall(i in Index, s in OurSectors, f in Flights)
if f in SectorFlights[s]
then b_cd[i,s,f] = (sum(p in Profile[s,f]: p <> last(Profile[s,f]))

(p.timeOver
<=m+ i * L - deltaT[f]
< Profile[s,f].next(p).timeOver
&
p.flightLevel + deltaH[p] <>

Profile[s,f].next(p).flightLevel + deltaH[Profilel[s,f].next(p)]

) >0
)
else b_cd[i,s,f] =0
endif ;

As the resulting OPL model has non-linear constraints, the OPL compiler translates the model into code
for ILOG Solver, rather than for CPLEX, and constraint solving takes place at runtime.
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Figure 3: The chosen multi-sector airspace over Western Europe. On the chosen day, the sectors
EBMAKOL and EBMANIL were collapsed into the sector EBMAWSL.

4 Experiments

For our experiments, the chosen air-traffic control centre is Maastricht, in the Netherlands. The chosen
multi-sector airspace within the Maastricht airspace consists of five sectors, covering the upper airspace
of the three BeNeLux countries and some airspace of northern Germany, depicted in Figure 3, and
characterised in Table 1. They are all high-density, en-route, upper airspace sectors (above FL 245). The
sector identified by sectorld stretches vertically between flight levels bottomFL and topFL. Unfortunately,
none of these sectors is below any other one, so that our traffic complexity resolutions cannot consider
re-routing a flight through a lower or higher sector in the chosen airspace, as required by constraint (6).
The weights asec, Ged, Gnspy and sector normalisation constants Sy, of the complexity metric are taken
from [6]. There are an additional 34 feeder sectors (not listed here), for which we only need to know the
bottomFL and topFL values. Hence:

OurSectors = {EBMALNL, EBMALXL, EBMAWSL, EDYRHLO, EHDELMD}
AllSectors = {EBMALNL, EBMALXL, EBMAWSL, EDYRHLO, EHDELMD, ...}
Engine = {turbo,jet}

and Sector encodes the corresponding superset of Table 1. Since constraint reasoning is faster on integers
than floats, we actually multiplied all the agsee, @ed, @nsp, and Sporm values by 100. As their original
accuracy is 2 decimal positions, we will not lose any precision, as long as any obtained complexity is
divided by 10,000 before it is displayed.

The chosen day is 23 June 2004. At the moment (5 August 2004) of choosing this day, it was the
busiest day that far of the year 2004. The chosen hours are the peak traffic hours, that is from 07:00
to 22:00 local time. The chosen flights follow standard routes (no free flight) and are of the turbo-prop
or jet type. The chosen point profiles are so-called model-3 (radar-corrected) profiles, as these better
reflect actual traffic than model-1 (filed) profiles. The Central Flow Management Unit (CFMU) provided
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sectorld bottomFL | topFL Asec Qed Ansh | Snorm
EBMALNL 245 340 7.74 | 15.20 | 5.69 | 1.35
EBMALXL 245 340 578 | 5.71 | 15.84 | 1.50
EBMAWSL 245 340 6.00 | 7.91 | 10.88 | 1.33
EDYRHLO 245 340 12.07 | 6.43 | 9.69 | 1.00
EHDELMD 245 340 4.42 | 10.59 | 14.72 | 1.11

Table 1: Characterisation of the chosen multi-sector airspace

lookahead | k | L | Average planned complexity | Average resolved complexity
20 2 | 210 87.92 47.69
20 3| 180 86.55 50.17
45 2 1210 87.20 45.27
45 3 | 180 85.67 47.81
90 2 | 210 87.29 44.67
90 3| 180 85.64 47.13

Table 2: Average planned and resolved complexities in the chosen airspace

us with the flight profiles for these choices. There are 1,798 flight profiles, after statically repairing
761 flight profiles that included impossibly steep climbs or descents (which would otherwise have to be
repaired dynamically according to the constraint (10) during complexity resolution) and discarding 26
flights whose profiles were not repairable.

The maximum approach time is 78 minutes for this traffic sample. By formula (3), this means that
approach times can be changed by integer amounts of minutes within the range [—4,...,+8]. This is a
sufficiently large range, almost of the magnitude of the range AT of take-off-time changes, so that the
second form of complexity resolution can be expected to lead to significant changes in its own right.

Our experiments show that the described forms of complexity resolution lead to systematic reductions
of the sum of the complexities of the sectors of the chosen airspace.

In Table 2, every line summarises the results on the 180 instances obtained by taking nmow at every
5 minutes between 07:00 and 22:00 on the chosen day. The average reduction in the average complexity
over the five sectors is shown over these instances for various values of the smoothing degree k, the length
L (in seconds) of the time steps, and lookahead. We kept ff = 90% of the planned flights in the chosen
airspace, and used timeOut = 120 seconds. With larger values of lookahead, it is possible to get better
complexity reductions, simply because more flights are not airborne yet and thus offer more opportunities
for resolution. With larger values of k (and thus lower values of L), it is possible to get a slightly better
reduction in complexity, but with k& = 2, it is possible already to get nearly a 50% reduction in complexity.
The experiments were performed with OPL 3.7 under Linux 2.6.4-52 on an Intel Pentium 4 CPU with
2.53GHz, a 512 KB cache, and a 1 GB RAM. Most of the computations finished before timing out, or
were retrospectively seen (upon a larger value for timeOut) to have found (near-)optimal solutions at the
moment of timing out, which means that the proofs of optimality were more time-consuming than finding
the optima. Other experiments confirmed that reducing ff or increasing timeOut gives better results.

In practice, complexity resolution in an MSP context will not be a constraint optimisation problem
(COP), as here, but rather a constraint satisfaction problem (CSP). There will be many additional
constraints, which simply have to be satisfied, such as requiring the resolved complexities to be within
prescribed intervals. Since CFMU flight profiles derived from the flight plans introduced by the airlines are
not very accurate (witness the amount of necessary repairs we had to perform) and currently incorporate
only an attempt at balancing the numbers of flights (the Ng.. term of our traffic complexity metric)
between sectors, we cannot impose such maximal or even minimal bounds on the resolved complexities,
as feasible solutions might then not exist. Indeed, there are enormous discrepancies among the planned
complexities, and even optimal complexity resolution can often not sufficiently reduce them. We ought
to get better flight profiles for such additional constraints and experiments, so that we can then switch
from a COP to a CSP. The reasons why we report here on optimisation experiments are that they give an
upper bound on the runtime performance of the model and that this upper bound is already very good.

This is also why we do not illustrate the differences between some planned and resolved flight profiles,
and rather just compiled our many experiments into the single two-dimensional Table 2. What that table
does not show, however, is that the resolved complexities were much more evenly balanced among the
chosen sectors than the planned complexities.
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5 Conclusion

Constraint programming offers a very effective medium for modelling and efficiently solving the problem of
minimising and balancing the traffic complexities of an airspace of adjacent sectors. The traffic complexity
of a sector is here defined in terms of the numbers of flights within it, near its border, and on non-level
segments within it. The allowed forms of complexity resolution are the changing of the take-off times of
not yet airborne flights, the changing of the approach times into the chosen airspace of already airborne
flights by slowing down and speeding up within the two layers of feeder sectors around that airspace,
as well as the changing of the levels of passage over points in that airspace. Experiments with actual
European flight profiles obtained from the Central Flow Management Unit (CFMU) show that these
forms of complexity resolution can lead to significant complexity reductions and rebalancing.

A lot of related work is about dealing with potentially interacting pairs (PIPs) of flights. However,
as the number of PIPs had a very low correlation with the traffic complexity, due to the fact that this
element of moment complexity is already captured by the total number of flights in the sector and by
the number of non-level flights in the sector [6], we did not have to resolve them away, nor even worry
about their number in the resolved flight profiles.

There is also a large literature on complexity metrics for estimating workload, and we refer to [4] for
a thorough recent survey thereof, as doing so here is beyond the scope of this paper.

The work closest to ours was done for the airspace of the USA in [10]. The main differences with our
work are as follows. They have (at least initially) static lists of alternative routes to pick from for each
flight and do not consider changing the time plans, whereas we dynamically construct (only vertically)
alternative routes and new time plans. Their sector workload constraints limit the average number of
flights in a sector over a given time interval (like the Ny, term of our complexity metric) and the number
of PIPs (recall that our intended N, term was eliminated for lack of statistical significance [6]), but
these terms are not part of a complexity metric. No multi-sector planning is performed to reduce and
re-balance the workloads of selected sectors. However, a notion of airline equity is introduced toward a
collaborative decision-making process between the FAA and the airlines.

Another important related work aims at minimising costs when holding flights (on the ground or
in the air), if not re-routing them, in the face of dynamically changing weather conditions [2]. The
main differences with our work are as follows. Their objective is cost reduction for airlines and airports,
whereas our work is airspace oriented. They only consider ground holding and air holding, whereas we
also consider the planning of earlier take-offs and the speeding-up of airborne flights. Their dynamic
re-routing is on the projected two-dimensional plane, whereas ours is in the third dimension. Their sector
workload constraints limit the number of flights in a sector at any given time, but there is no complexity
metric and no multi-sector planning.

As this little overview of related work shows, the whole problem of optimal airspace and airport usage
by the airlines is very rich, and only facets thereof are being explored in each project. Our work intends
to reveal some new facets, such as complexity metrics and multi-sector planning.

Also, since the complexity resolution happens for a time interval [m,...,m + k - L] in the future,
constraints will be needed to make sure no unacceptable complexity is generated before m.

Another issue is the implementation of the calculated complexity resolutions. Additional constraints
are needed to make sure that the proposed flight-profile updates can be implemented sufficiently quickly,
and that doing so is still offset by the resulting complexity reductions and rebalancing among sectors.
For instance, the number of flights affected by the changes may have to be kept under a given threshold.

There is a lot of other future work to do before an early prototype like ours can be deployed in a
tactical context. Its main current objective is therefore strategic, namely to provide a platform where new
definitions of complexity can readily be experimented with, and where constraints can readily be changed
or added. This motivated the choice of constraint programming (CP) as implementation technology,
since the maintenance of constraint programs is simplified. Furthermore, the likely addition of many
more side-constraints will make the problem less and less purely combinatorial, and this is the typical
scenario where CP is expected to be faster or to find better solutions than rival technologies [9].
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