On Constraint-Oriented Neighbours
for Local Search

2 1

Magnus Agren!, Pierre Flener'?*, and Justin Pearson

! Department of Information Technology
Uppsala University, Box 337, SE — 751 05 Uppsala, Sweden
{agren,pierref,justin}@it.uu.se
2 Faculty of Engineering and Natural Sciences
Sabanci University, Orhanli, Tuzla, TR — 34956 Istanbul, Turkey

Abstract. In the context of local search, we investigate the exploration
of constraint-oriented neighbourhoods, where a set of constraints is picked
before considering the neighbouring configurations where those constraints
may have a different penalty. Given the semantics of a constraint, neigh-
bourhoods consisting only of configurations with decreased (or preserved,
or increased) penalty can be represented intensionally as a new attribute
for constraint objects. We present a framework for combining neigh-
bourhoods that allows different local search heuristics to be expressed,
including multi-phase heuristics where an automatically identifiable suit-
able subset of the constraints is satisfied upon a first phase and then
preserved in a second phase. This simplifies the design of local search
algorithms compared to using just a variable-oriented neighbourhood,
while not incurring any runtime overhead.

1 Introduction

Local search (e.g., [1]) starts from a possibly random initial configuration (as-
signment of values to all the variables) of a combinatorial problem. Each configu-
ration has a penalty, which is zero if it is a solution to the problem. Local search
iteratively makes small changes to the current configuration in an attempt to
reduce its penalty, until either a solution is found or allocated computational
resources have been consumed. The configurations examined for each such move
constitute the neighbourhood of the current configuration. Heuristics are used
to choose a neighbouring configuration, using only local information such as the
current configuration and its neighbourhood, but tend to guide the search to a
local optimum. Metaheuristics such as tabu search or simulated annealing are
thus usually needed to escape local optima and guide the search to a global
optimum, using information collected or learned during the execution so far.
Constraint-based local search (e.g., [10]) integrates ideas from constraint pro-
gramming (CP) and software engineering to the traditional artificial-intelligence
(AI) flavour of research on local search. Of particular interest to this paper is

* Currently an ERASMUS Exchange Teacher visiting from Uppsala University.

that rich modelling and search languages are offered towards a clean separation
of the model and search components of a local search algorithm, via abstractions
that facilitate its design and maintenance. One such abstraction is the concept
of comstraint, which captures some substructure that is common in combinato-
rial problems. For instance, the AllDifferent(z;,...,z,) constraint requires its
arguments to be pairwise different. A constraint can be seen as an object [6,
10], storing attributes, such as its set of variables and its penalty, and provid-
ing primitives such as the determination of the penalty change incurred if some
of its variables were assigned different values. For efficiency, the attributes and
primitive results must be maintained incrementally upon each move.

This paper contributes to the integration of CP ideas into the Al field of
local search, enriching the interface of constraint objects with a new attribute
and a new primitive. The objective is to continue to simplify the design and
maintenance of local search algorithms, along two orthogonal but complementary
directions.

First, many neighbourhoods are variable-oriented, in the sense that a set
of variables is picked before considering the neighbouring configurations where
those variables take different values. One approach is to attach some level of con-
flict to variables and to pick a most conflicting variable. However, the abstraction
of constraint objects offers opportunities for constraint-oriented neighbourhoods,
in the sense that a set of constraints is picked before considering the neigh-
bouring configurations where those constraints may have a different penalty.
The knowledge of the semantics of a constraint allows the designer of the corre-
sponding constraint object to perform a lot of static precomputations for such
constraint-oriented neighbourhoods, and these precomputations simplify the de-
sign and maintenance of local search algorithms and may even save search time.
By doing this, we extend the idea of constraint-directed search (e.g., [5,12,10])
to accommodate moves having specific properties, without having to actually
evaluate their effect on the penalty.

Second, it is common practice to satisfy in a first phase a subset of the model
constraints in the initial configuration, and then to focus during a second phase
on neighbourhoods whose moves preserve the truth of these constraints while
trying to satisfy the remaining constraints (see [4], for example). However, the
desirable separation of concerns propounded by the slogan “Constraint-Based
Local Search = Model + Search” [10] is not quite achieved yet. If some con-
straints are no longer preserved by the local search procedure, then they must
be made explicit in the model and any newly preserved constraints could be com-
mented out there. A cleaner separation of concerns would be achieved if all the
problem constraints were always made explicit in the model. Other than easier
maintenance and enabled reuse of the model under other solving technologies
than local search, the benefit would be the possibility of tool support in the
choice of the preserved constraints. Otherwise, their determination is entirely
left to the human intuition (and willingness to experiment) of the programmer.

The remainder of this paper is organised as follows. First, in Section 2, we
define the basic concepts of local search more precisely and present the problems

on which we shall conduct our experiments. The contributions and importance
of this work can then be stated as follows:

— We show how some constraint-oriented neighbourhoods can be represented
intensionally as an attribute for a constraint object. (Section 3)

— We present a framework for combining neighbourhoods that allows common
local search heuristics to be expressed, including multi-phase heuristics where
a subset of the constraints is satisfied upon a first phase. We successfully ex-
periment with one of these heuristics, showing how it simplifies the design of
the local search algorithm compared to using just a variable-oriented neigh-
bourhood, while not incurring any runtime overhead. (Section 4)

— We provide some experimental evidence for an automatable empirical ap-
proach to identifying the subset of constraints that could be satisfied in a
first phase and then preserved in a second phase while trying to satisfy the
remaining constraints. This approach is partially based on an optional new
primitive for a constraint object, namely a search-free construction primitive
for computing a configuration that satisfies the constraint. (Section 5)

In Section 6, we conclude, discuss related work, and outline future work.

2 Preliminaries

A constraint satisfaction problem (CSP) is a triple (X, D,C), where X is a finite
set of variables, D is a finite domain containing the possible values for each
variable z € X', and C is a finite set of constraints, each being defined on a subset
of X and specifying its valid combinations of values. By abuse of language, we
often identify a constraint with the singleton set containing it, and P with C.
In this paper, we focus on set-CSPs, that is CSPs where the domain D is the
power set & (U) of some set U, called the universe. Note that scalar variables
can be mimicked by set variables constrained to be singletons. Even though we
only consider set-CSPs, we make no claims about their superiourity, and our
results transpose to other variants of CSPs, such as the traditional scalar CSPs.

Definition 1 (Configuration and Solution). Let P = (X,D,C) be a CSP:

— A configuration for P (or X) is a total function k : X — D.
— A configuration k is a solution to a constraint set C' C C if and only if each
constraint ¢ € C' is satisfied under k.

Let Kp denote the set of all configurations for P.

Ezample 1. Consider the CSP P = ({S,T}, #Z({a,b,c}),{S C T}). A configura-
tion for P is given by k(S) = {a,b} and k(T) = @, or equivalently by k = {S
{a,b},T — 0}. A solution to S C T is given by s = {S — {a,b},T — {a,b,c}}.
Indeed, s(S) = {a,b} is a strict subset of s(T') = {a,b,c}.

Definition 2 (Neighbourhood and Move). Let P = (X,D,C) be a CSP:

— A neighbourhood function for C' C C is a functionn: Kp — P(Kp).

The neighbourhood of C' C C with respect to a configuration k € Kp and a
neighbourhood function n is the configuration set n(k).

— A move function for P is a function m : Kp — Kp.

The variable neighbourhood for x € X with respect to k is the subset of
Kp reachable from k by keeping the bindings of all variables other than x:
ny(k)={{eKp:VyeX y£z—k(y) =Ly)}.

Focusing on set-CSPs, we here consider the following move functions, for all
set variables S, T and universe elements u,v of the considered CSP: add(S,v)
adds v to S, drop(S,u) drops u from S, flip(S,u,v) replaces u in S by v,
transfer(S,u,T) transfers u from S to T, and swap(S,u,v,T) swaps u of S
with v of T. Given a configuration k, the effects of these moves are only defined
ifuek(S)Av&Ek(S)ANu ¢ k(T)Av e k(T). This allows us to introduce the
following neighbourhood functions for a constraint set C over the variable set X

— Add(C) such that Add(C)(k) = {add(S,v)(k): S € X}.

Drop(C) such that Drop(C)(k) = {drop(S,u)(k) : S € X}.

Flip(C) such that Flip(C)(k) = {flip(S,u,v)(k): S € X}.

— Transfer(C) such that Transfer(C)(k) = {transfer(S,u,T)(k) : S,T € X}.
Swap(C) such that Swap(C)(k) = {swap(S,u,v,T)(k): S, T € X}.

Let N(C) denote the neighbourhood function resulting from all these functions:
N(C)(k) = Add(C)(k) U Drop(C)(k) U Flip(C)(k) U Transfer(C)(k) U Swap(C)(k)

Ezample 2. Consider the constraint S C T and the configuration k = {S —
{a},T — {b}}. Assuming that U = {a, b}, we have that:

Add(ScCT
Drop(S CT

()(k) = {add(S,b)(k), add(T, a)(k)}

()(k)
Flip(S Cc T)(k)

()(k)

()(k)

{drop(S,a)(k), drop(T,b)(k)}

{flip(S, a,b)(k), flip(T', b, a)(k)}
{tmnsfer(S a,T)(k), transfer(T,b, S)(k)}
— {suwap(S,a,b, T) (k)

Transfer(S C T
Swap(S C T

Definition 3 (Penalty and Variable Conflict). Let P = (X, D,C) be a CSP:

— A penalty function of C' C C is a function penalty(C') : Kp — N such that
penalty(C')(k) = 0 if and only if k is a solution to C'.

— The penalty of C' C C under a configuration k is penalty(C’)(k).

— A variable-conflict function of C' C C is a function conflict(C') : X x Kp —
N such that if conflict(C')(x,k) = 0 then Y€ € ny(k) : penalty(C")(k) <
penalty(C')(€). (See [3] for more details).

— The variable conflict of a variable x € X with respect to C' C C under a
configuration k is conflict(C')(z, k).

Ezample 3. The global constraint AllDisjoint(X) is satisfied under configuration
k if and only if the intersection between any two distinct set variables in X is
empty. The following penalty function:

U k() (1)

Sex

penalty(AllDisjoint (X)) (k) = (Z |k(S)|> -

Sex

computes the total number of drop moves needed to nullify the penalty of the

constraint, that is to transform the current configuration into a solution, and has

been experimentally used in [2]. For instance, the penalty of AliDisjoint({S,T,V})
under configuration k = {S +— {a,b,c},T — {b,c,d},V > {d,e}} is 8 = 5 = 3,

and indeed it suffices to drop the three shared elements b, ¢, d from any set each

to get a solution. The following variable conflict function:

conflict(AllDisjoint(X))(S, k) = {u € k(S) : IT € X\ {S} :u € k(T)}|

computes the total number of drop moves needed on S to nullify the conflict
of S. For instance, the conflict of variable S with respect to the penalty and
configuration above is 2, and indeed it suffices to drop the two elements b, c it
shares with other sets to get a zero conflict of S (but not a zero penalty).

To finish these preliminaries, we now present two set-based models of classical
benchmark problems in local search, on which we shall conduct our experiments.

Ezample 4. The progressive party problem [9] is about timetabling a party at
a yacht club, where the crews of some guest boats party at host boats over a
number of periods. The crew of a guest boat must party at some host boat in
each period (¢1). The spare capacity of a host boat is never to be exceeded (c2).
The crew of a guest boat may visit a particular host boat at most once (c3). The
crews of two distinct guest boats may meet at most once (cy4).

A set-based model of this problem can be designed as follows in our local
search framework. Let H and G be the sets of host boats and guest boats,
respectively. Let capacity(h) and size(g) denote the spare capacity of host boat
h and the crew size of guest boat g, respectively. Let P be the set of periods.
Let Shp be a set variable denoting the set of guest boats whose crews boat h
hosts during period p. The following constraints then model the problem:

(c1) Vp € P : Partition({Sp,p: h € H},G)

(c2) Vh € H :Vp € P : MaxWeightedSum(S, p, size, capacity(h))
(c3) Vh € H : AllDisjoint({Sh,p : p € P})

(ca) MazIntersect({Sh,:h € HApe€ P}, 1)

The global constraint Partition(X, Q) is satisfied under configuration k if and
only if the values of the set variables in X partition the constant set (), where the
value of each S € X may be the empty set. The constraint MazWeightedSum/(S, w, m)
is satisfied under k if and only if }°, ;s w(u) < m. The global constraint
MazxIntersect(X,m) is satisfied under k if and only if the cardinality of the in-
tersection of any two distinct set variables in X’ is at most the constant m.

Ezample 5. In the social golfer problem, there is a set of golfers, each of whom
plays golf once a week (c5) and always in ng groups of ns players (cg). The
objective is to determine whether there is a schedule of nw weeks of play for
these golfers, such that there is at most one week where any two distinct players
are scheduled to play in the same group (c7).

A set-based model of this problem can be designed as follows. Let G be the
set of ng - ns golfers. Let Sy ., be a set variable denoting the golfers playing in
group ¢ in week w. The following constraints then model the problem:

(e5) Vw € 1...nw : Partition({Sg. : g €1...ng9},G)
(c6)Vgel...ng :Vwe l...nw: Cardinality(Sg ., ns)
(c7) MazIntersect({Sgw:9g€1l...ngAwel...nw}, 1)

The constraint Cardinality(S,n) is satisfied under k if and only if |k(S)| = n.

3 Constraint-Oriented Neighbourhoods

We here view the neighbourhoods from a constraint perspective, as opposed to
a variable perspective as is often the case. When we construct a neighbourhood
from a variable perspective, we usually start from a set of variables and ap-
ply changes to one or more of those variables, while evaluating the effect that
these changes have on the constraint penalties. From a constraint perspective, we
start from a set of constraints and obtain the neighbours directly from those con-
straints. The advantage is that we can then exploit combinatorial substructures
of the constraints, and for example focus on constructing neighbourhoods with
particular properties. By doing this, we extend the idea of constraint-directed
search [5,12,10] to accommodate moves with specific properties. In this way,
without having to actually evaluate them, moves that decrease, preserve, and
increase the penalty are directly obtained from the constraints.

Definition 4. Let ¢ be a constraint defined on the set of variables X, let k be a
configuration for X, and let penalty(c) be a penalty function of c:

— The decreasing neighbourhood of ¢ with respect to k and penalty(c) is the
set {c}ic = {¢ € N(c)(k) : penalty(c)(k) > penalty(c)(£)}.

— The preserving neighbourhood of ¢ with respect to k and penalty(c) is the
set {c}; = {€ € N(c)(k) : penalty(c)(k) = penalty(c)({)}.

— The increasing neighbourhood of ¢ with respect to k and penalty(c) is the
set {C}L = {¢ e N(c)(k) : penalty(c)(k) < penalty(c)(£)}.

Ezample 6. Consider the constraints AllDisjoint(X) and Partition(X, Q) and
let k be a configuration for X. The decreasing, preserving, and increasing neigh-
bourhoods for these constraints are listed in Figure 1. In order to keep the
notation lean, we use |X|F as a shorthand for the number of sets in X' that con-
tain u with respect to k, i.e., |X|* = [{T € X : u € k(T)}|. Also, the condition
SSTeXANuvelUNu€ek(S)ANvEk(S)ANudk(T)Av e k(T) is always im-
plicit. Technically, the preserving neighbourhoods must also be expanded with

{AliDisjoint(X)}} =
{drop(S,u)(k) : |X|F > 1} U
{Aip(S,u,v)(k) : drop(S,u)(k) € {AllDisjoint(X)},i A add(S,v)(k) € {AllDisjoint (X))} }
{AllDisjoint(X)}, =
{drop(S.u)(k) : [X% = 1} U {add(S, v) (k) : |]} = 0} U
{flip(S,u,v)(k) : drop(S,u)(k) € {AllDisjoint(X)}} A add(S,v)(k) € {AllDisjoint(X)}] v
drop(S,u)(k) € {AllDisjoint(X)};, A add(S,v)(k) € {AllDisjoint(X)}; }
{transfer(S,w,T)(k)} U {swap(S,u,v,T)(k)}
{AllDisjoint(X)}} =
{add(S,v)(k) : |X|* >0} U
{flip(S, u,v)(k) : drop(S,u)(k) € {AllDisjoint(X)};; A add(S,v)(k) € {AllDisjoint(X)}L}

U

{Partition(X,Q)}t =
{drop(S,u)(k) : |X|F >1Vv|X[F =1 Au¢ QYU {add(S,v)(k): |X|F =0AveEQ}U
{Aip(S, u,v)(k) : drop(S, u)(k) € { Partition(X,Q)}} A add(S,v)(k) € { Partition(X,Q)}+}
{Partition(X,Q)}; =
{flip(S, u,v)(k) : drop(S,u)(k) € {Partition(X,Q)}L A add(S,v)(k) € {Pa?"tit'ion(/l’,Q)},lC Y
drop(S, u)(k) € { Partition(X, Q)},lC A add(S,v)(k) € {Partition(X, Q)}L} U
{transfer(S,u,T)(k)} U {swap(S,u,v,T)(k)}
{Partition(X, Q)}L =
{add(S,v)(k) : |[X]F >0V |X|* =0Av ¢ QYU {drop(S,u)(k): |X|* =1AuecQ}uU
{flip(S, u,v)(k) : drop(S,u)(k) € {Partition(X, Q)},TC A add(S,v)(k) € {Partition(X, Q)}L}

Fig. 1. Decreasing, preserving, and increasing neighbourhoods of AllDisjoint and
Partition. The condition S,T € X Au,v € UNu € k(S)ANv &€ E(S)Au & k(T)Av € k(T)
is always implicit, and so are all moves on all variables not in X' for { Partition(X, @)}y
and {AllDisjoint(X)}; .

the effects of all moves on the set variables of the CSP that are not part of the
considered constraint. The underlying penalty function for AllDisjoint is formula
(1) of Example 3, and the one for Partition is defined by:

penalty(Partition(X, Q))(k) =

(ZM@O—LM@

Sex Sex

+Q\ (kS

Sex

+

UM&W%@)

Sex

We only explain the preserving cases for both constraints; the other cases are
explained similarly. Regarding { AllDisjoint(X)}%: we may keep the value of (1)
constant by (i) removing an element u from S if S is the only variable containing
u, or by (ii) adding an element v to S if there is no other variable containing
v, or by (iii) flipping an element in S if dropping the old element decreases the
value of (1) by the same amount (which we know to be 1 here) as adding the new
element increases it, or if dropping the old element and adding the new element
both keep the value of (1) constant, or by (iv) transferring an element from S
to T, or by (v) swapping an element in S with an element in 7.

Regarding { Partition(X, Q)};: we may keep the value of (2) constant by (i)
flipping an element in S if dropping the old element increases the value of (2)
by the same amount (which we know to be 1 here) as adding the new element
decreases it, or the opposite, or by (ii) transferring an element from S to T', or
by (iii) swapping an element in S with an element in 7.

It should be noted that, in practice, given a constraint c, the sets {c}i,

{c}%, and {c},T< are represented intensionally and procedurally by iterate and
member primitives. Hence, they need not be maintained incrementally between
configurations. For example, the iterate and member functions for the AllDisjoint
constraint can be found in Appendix A. As a result of this, even though the
definitions of the sets {c},ﬁ, {c}%, and {c}}€ are mutually recursive in the sense
that membership tests are done, those membership tests can be done in constant
time, without having to actually recursively construct the sets.

4 Constraint-Oriented Heuristics

We will now show three common heuristics constructed by using the ideas pre-
sented in the previous section. All heuristics have a greedy approach and would
usually be extended with metaheuristics (e.g., tabu search, simulated annealing,
and restarting mechanisms) in real applications.

All heuristics in this section use a choose operator that picks a member
in a set having a particular property. In the case of picking a member of the
decreasing/preserving/increasing sets of neighbours, this choose operator is im-
plemented by using the iterate and member functions of the constraints, as
mentioned in Example 6 above.

Simple heuristics. We start by showing a simple heuristic BESTNEIGHBOUR
in Algorithm 1. It is a greedy algorithm picking the best neighbour in the set
of decreasing neighbours of an unsatisfied constraint. BESTNEIGHBOUR takes a
set of constraints C as argument and returns a solution to all the constraints
if one is found. In the algorithm, we start by initialising & to be a random
configuration for all variables in C (line 2). We then iterate as long as there are
any unsatisfied constraints (lines 3 to 8). At each iteration, we pick a constraint
¢ with maximum penalty (line 4), and update k to be any configuration in the
decreasing neighbourhood of ¢ minimising the total penalty of C (line 5). If there
are no more unsatisfied constraints, then the current configuration (a solution)
is returned (line 9).

BESTNEIGHBOUR is a variant of constraintDirectedSearch of [10]. Apart
from the tabu mechanism of constraintDirectedSearch, the main difference
is the way line 5 is implemented. While in BESTNEIGHBOUR, the decreasing
moves are obtained directly from the constraint, meaning that no other moves
are evaluated, the decreasing moves of constraintDirectedSearch are obtained
by evaluating all moves, i.e., also the preserving and increasing ones.

As it requires, given a current configuration, that there always exists at least
one decreasing neighbour, BESTNEIGHBOUR is easily trapped in local minima.

Algorithm 1 Choosing neighbours with maximum penalty decrease.

1: function BESTNEIGHBOUR(C)

2: k «— RANDOMCONFIGURATION(C)
3 while 3 ¢ € C (penalty(c)(k) > 0) do

4 choose ¢ € C maximising penalty(c)(k) for

5 choose / € {c}} minimising > ccc penalty(c)(€) for k £
6: end choose

T end choose
8

9

10:

end while
return k
end function

We may improve the algorithm by also allowing preserving and increasing moves
of the constraint picked in line 4. This can be done by simply replacing line 5
with the following:
if {c}; # 0 then
choose / € {c}; minimising > ecc Penalty(c)(¢) for k « £ end choose
else if {c}; # 0 then
choose £ € {c}}; minimising }___. penalty(c)(¢) for k — £ end choose
else choose / € {c}} minimising > ecc penalty(c)(¢) for k «— £ end choose
end if
It should be noted here that, while this algorithm is simple to express also in
a variable-oriented approach (by, e.g., evaluating the penalty differences with
respect to changing a particular set of variables according to some neighbour-
hood function, focusing on those giving a lower/constant/higher penalty), the
constraint-oriented approach allows us to focus directly on the particular kind
of moves (decreasing/preserving/increasing) that we are interested in.

Multi-phase heuristics. One of the advantages with the approach presented
in this paper is the possibilities it opens up for the simple design of multi-phase
heuristics. This is a well-known method and often crucial to obtain efficient
algorithms (see [4], for example). In a multi-phase heuristic, a configuration
satisfying a subset IT C C of the constraints is first obtained. This configuration
is then transformed into a solution satisfying all constraints by only searching
the preserving neighbourhoods of the constraints in I7.

In Algorithm 2, we show a multi-phase heuristic BESTPRESERVING. The
algorithm takes two sets of constraints IT and X' as arguments, where ITUX = C,
and returns a solution to all constraints in C if one is found. In the algorithm, a
configuration k£ for all the variables of the constraints in C = IT U X, satisfying
the constraints in I7, is obtained by the call SOLVE(II,) (line 2). The function
SOLVE could be a heuristic method or some other suitable solution method.
(Some sets of constraints may even be trivial to satisfy by an initial configuration,
without search.) As in Algorithm 1, we then iterate as long as there are any
unsatisfied constraints in X (lines 3 to 6). At each iteration, we update k to be
any neighbour ¢ that preserves all constraints in 7, minimising the total penalty

Algorithm 2 Choosing preserving neighbours with maximum penalty decrease.

1: function BESTPRESERVING(II, X)
2: k «— SOLVE(II, X)
while 3 ¢ € ¥ (penalty(c)(k) > 0) do

choose ¢ € () {c}; minimising) penalty(c)(k) for k — ¢
cell ceX
end choose

end while
return k
end function

of X (lines 4 and 5). If there are no more unsatisfied constraints in X, then the
current configuration (a solution) is returned (line 7).

One problem with Algorithm 2 is that, if IT is large or contains constraints
involving many variables, the size of the intersection of the preserving neigh-
bourhoods on line 4 may be too large to obtain an efficient algorithm. There
are many methods to overcome this problem and we will here present one such
method using conflicting variables. The conflict of a variable is a measure of
how much a particular variable contributes to the penalty of the constraints it
is involved in (see Definition 3). By focusing on moves involving such conflict-
ing variables or perhaps even the most conflicting variables, we may drastically
shrink the size of the neighbourhood, obtaining a more efficient algorithm, while
still preserving its robustness.

The heuristic BESTPRESERVINGPROJECTED shown in Algorithm 3 differs
from BESTPRESERVING in the following way: After k is assigned initially, X
is assigned the set of all variables of the constraints in I7T (line 3). Then, at
each iteration, a most conflicting variable € X is picked (line 5) before the
preserving neighbourhoods of the constraints in II are searched. Next, when
the best neighbour is to be picked (line 6), the constraints in IT and X are
projected onto those containing x, drastically reducing the number of neighbours
to consider. We use C|, to denote the constraints in C containing x, e.g., {x <
a,r # b,y >a}), ={r <a,x#b}.

Note that projecting neighbourhoods onto those containing a particular set of
variables, such as conflicting variables, is a very useful variable-oriented approach
for speeding up heuristic methods. In this way, Algorithm 3 is a fruitful cross-
fertilisation between a variable-oriented and a constraint-oriented approach for
generating neighbourhoods.

Necessary data-structures for free. Another advantage with the approach
presented in this paper is that necessary data structures for generating neigh-
bourhoods that traditionally had to be explicitly created come for free here.
The model of the progressive party problem of Example 4 is based on a set of
set variables X where each S}, ;, € X denotes the set of guest boats whose crews
boat h hosts during period p. Assume now that we want to solve this model
using Algorithm 3 where IT = {Partition({Sy, : h € H},G) : p € P}. Now,

10

Algorithm 3 Choosing preserving neighbours with maximum penalty decrease
using conflicting variables.

1: function BESTPRESERVINGPROJECTED(/I, X)

2: k — SOLvE(Il, X)

X — the set of all variables of the constraints in I1
while 3 ¢ € ¥ (penalty(c)(k) > 0) do

choose z € X maximising) conflict(c)(z, k) for
ceX
choose £ € () {c}; minimising Y penalty(c)(k) for k «— ¢
cel, c€¥,

7 end choose
8: end choose

9: end while

10: return k

11: end function

having obtained a partial solution that satisfies IT in line 2 of the algorithm, the
only moves preserving I are moves that transfer a guest boat from a host boat
in a particular period to another host boat in the same period, or moves that
swap two guest boats between two host boats in the same period. The reason
for why moves that flip a guest boat of a host boat in a particular period is
not possible, even though flip moves are in the set {Partition(X,Q)};; defined
in Figure 1, is that Q = G = U in the progressive party problem. Whenever
this is the case, flip moves are not in {Partition(X,Q)};, which can be seen
in Figure 1. Now, to generate these preserving moves from a variable-oriented
perspective, we would have to create data structures for obtaining the set of
variables in the same period as a given variable chosen in line 6 of the algorithm.
By instead viewing this problem from a constraint-oriented perspective, we can
obtain the preserving moves directly from the constraints in IT and no additional
data structures are needed.

A similar reasoning can be done for the model of the social golfer problem
of Example 5, which is based on a set of set variables X where each S;,., € X
denotes the set of golfers in group g of week w. Assuming that

IT = {Partition({Sgw:9€1...n¢g},G):wel...nw}tU
{Cardinality(Syw,ns) : g€ 1...ngAw € 1...nw},

the only moves preserving I are moves that swap two golfers in different groups
in the same week. Again, by looking at this from a constraint-oriented perspec-
tive, the preserving moves are obtained directly from the constraints in I1 and
no additional data structures for accessing the different weeks are needed.

Experimental results. We implemented the ideas presented so far in this pa-
per for all the constraints used in the models of the progressive party problem
and the social golfer problem. The same experiments as those in [2] were then
run, mimicking the algorithms there but using the approach of this paper. For

11

Progressive Party (Algorithm 3)

Progressive Party (Algorithm of [2])

H /periods (fails) 6 7 8 9 10 H /periods (fails) 6 7 8 9 10
1-12,16 0.7 1.9 18.0 1-12,16 1.2 2.3 21.0
1-13 9.0 89.4 1-13 7.0 90.5

1,3-13,19 9.1 132.8 (4) 1,3-13,19 7.2 128.4 (4)
3-13,25,26 19.6 206.9 (16) 3-13,25,26 13.9 170.0 (17)
1-11,19,21 11.4 90.7 1-11,19,21 10.3 83.0 (1)

1-9,16-19 17.7 176.6 (16) 1-9,16-19 18.2 160.6 (22)

Social Golfer (Algorithm 3)

Social Golfer (Algorithm of [2])

ng-ns-nw time (fails)|ng-ns-nw time (fails) ng-ns-nw time (fails)|ng-ns-nw time (fails)
6-3-7 0.2 6-3-8 253.4 (79) 6-3-7 0.4 6-3-8 215.0 (76)
7-3-9 127.4 (1)| 8-3-10 6.0 7-3-9 138.0 (5)| 8-3-10 14.4
9-3-11 1.1 10-3-13 331.4 (3) 9-3-11 3.5 10-3-13 325.0 (35)
6-4-5 0.1 7-4-7 446.4 (57) 6-4-5 0.3 7-4-7 333.0 (76)
8-4-7 0.3 9-4-8 0.5 8-4-7 0.9 9-4-8 1.7
10-4-9 0.7 7-5-5 0.6 10-4-9 2.5 7-5-5 1.3

8-5-6 3.8 9-5-6 0.3 8-5-6 8.6 9-5-6 0.9
10-5-7 0.6 6-6-3 0.1 10-5-7 1.7 6-6-3 0.2

7-6-4 0.6 8-6-5 9.5 7-6-4 1.2 8-6-5 18.6

9-6-5 0.4 10-6-6 1.1 9-6-5 1.0 10-6-6 3.7

7-7-3 0.1 8-7-4 2.7 7-7-3 0.3 8-7-4 4.9

9-7-4 0.3 10-7-5 1.1 9-7-4 0.8 10-7-5 3.4

8-8-3 0.2 9-8-3 0.2 8-8-3 0.5 9-8-3 0.6
10-8-4 0.6 9-9-3 0.3 10-8-4 1.4 9-9-3 0.7
10-9-3 0.3 10-10-3 0.5 10-9-3 0.8 10-10-3 1.1

Table 1. Run times in seconds for the progressive party problem and the social golfer
problem. Mean run time of successful runs (out of 100) and number of unsuccessful
runs (if any) in parentheses.

both problems, this meant that all constraints were present in the models and
those discussed in the previous section were the ones chosen as the sets of pre-
served constraints I7. It also meant that we extended Algorithm 3 with the same
metaheuristics, maximum number of iterations, and so on as in [2]. For the pro-
gressive party problem, this additionally meant that we restricted the preserving
neighbourhoods of the partition constraints used in line 6 to only transfer moves
from the picked most conflicting variable, as these are the only kind of moves
considered in [2].

We show the experimental results (the ones obtained by using the approach of
this paper as well as those of [2]) in Table 1. Each entry in the tables is the mean
value of successful runs out of 100 for a particular instance, and the numbers
in parentheses are the numbers of unsuccessful runs, if any, for that instance.
All experiments were implemented in Objective Caml (http://www.ocaml.org)
and run on an Intel 2.4 Ghz Linux machine with 512 MB memory. Comparing
the different tables, we see that the results are similar. For some instances,
the results of [2] are slightly better, and for some other instances, the results
presented here are slightly better. Hence there are no overhead problems with
the approach taken in this paper.

5 Identifying the Constraints To Be Preserved

The multi-phase heuristics of the previous section hinge entirely on the identi-
fication of a suitable subset II of the problem constraints C that ought to be

12

satisfied upon a first phase by an initial configuration and then preserved during
the second phase while trying to satisfy the remaining constraints C \ I1.

While especially global constraints might carry enough information to enable
an offline static analysis of the model leading to a suggestion of IT, we here take
an empirical approach to this open research question.

A conjunction of constraints bundled under a possibly nested universal quan-
tification is here called a quantified constraint. We shall reason at the level of
quantified constraints rather than at the level of constraints, as we see no rea-
son to lower the grain of the analysis that much, due to the otherwise ensuing
combinatorial explosion (of at least our approach).

Suppose the constraint set C of the model has n quantified constraints. The
idea is very simple, and amenable to full automation. For each of the 2" subsets
m C C of quantified constraints, we add up the following two amounts of time:

1. The time ¢ to find a configuration k, satisfying .

2. The time t£ to find a configuration k¢ satisfying C \ 7, proceeding by local
search from k. under moves preserving 7. Note that k¢ even satisfies C and
is thus a solution to the considered problem.

The subset II C C of quantified constraints that are to be preserved is then
empirically determined to be the set 7 such that the total solution time T, =
t2 +t? is minimal for all 7 C C.

Note that tj = e~ 0 = t%, if we consider negligible the time to find a config-
uration satisfying the empty set of constraints, that is the time € to construct a
random configuration. Also note that tg + € = t¢, as a random initial configura-
tion has to be constructed first when trying to satisfy the full set of constraints,
which itself takes the same time as preserving the empty set of constraints. Hence
Ty = Tc. We are in practice only interested in the non-empty strict subsets 7 of
C where T, < T¢ = Tp, so upon determining Ty (or T¢) first, we can set that
value as a time-out for the other runs. A useful generalisation is to add up, at
every iteration, the times for several training instances, rather than just one.

Although the number of subsets is exponential in n, this is not a problem as
there are often not that many quantified constraints in a model. For instance,
the progressive party model in Example 4 has only n = 4 quantified constraints.

In the absence of a search-free construction primitive for finding k., we pro-
ceed only by local search from a random initial configuration. While such con-
struction primitives may be available for individual constraints, and thus for
quantified constraints (if the scopes of the quantifications do not overlap), it is
an open question how to compose them for a set of (quantified) constraints.

If many instances of the problem have to be solved, then such a possibly
lengthy pre-processing of the model may pay off. We assume that a representative
set of training instances of the problem is available, and that any conclusions
drawn from them carry over to the actual instances.

Ezample 7. Let us check this automatable approach on our model of the progres-
sive party problem in Example 4, even though this is not the kind of problem

13

Preserved set 3 periods|4 periods|5 periods|6 periods|7 periods|8 periods
{c1}, by search 0.97 1.39 1.98 2.76 4.30 8.29
{c1}, by construction 0.28 0.41 0.72 1.21 2.38 5.93
{c2} 18.98 52.35 92.40 - - -
{cs}, by search 15.56 41.16| 125.49 - - -
{c3}, by construction 15.10 40.47| 124.46 - - -
{ca} 2.25 3.27 5.74 12.87 31.72| 435.56
{c1,c2} 6.59 6.55 10.30 27.38 27.69 33.84
{c1,c3} 0.92 1.31 1.81 2.47 3.57 7.89
{c1,ca} 2.04 2.88 4.59 7.21 10.85 22.28
{c2,c3} 22.70 53.84 78.54| 149.97 - -
{c2,ca} 8.50 16.44 28.22 76.26| 415.34 -
{cs,ca} 2.38 3.83 6.82 13.60 48.38| 635.96
{c1,¢2,c3} 30.81 78.67 - - - -
{c1,ca,ca} 17.50] 51.03] 114.70 - - -
{c1,c3,ca) 1.83 3.02 161 685 13.29] 30.24
{c2,c3,c4} 7.71 14.39 29.88| 148.66 - -
{c1,e2,c3,ca} 97.48 - - - - —

Table 2. Times T to solve the 1 — 13 instance of the progressive party problem over
3 to 8 periods, while preserving various non-empty subsets 7 of the constraints

where many instances have to be run in practice before recovering the pre-
processing cost. There are n = 4 quantified constraints in the constraint set C,
hence only 2* = 16 experiments over subsets of C are necessary, or 15 actually, as
Ty = T¢. Table 2 reports, for each of the non-empty subsets m C C, the average
times T it takes to solve over 3 to 8 periods the classical instance of [9] where
the first 13 of the 42 boats are the host boats. A dash (-) indicates that less than
50% of the 10 runs on that instance succeeded in finding solutions. The times
t2 were obtained by local search from a random initial configuration, as well as,
for some of the singleton sets 7, by available search-free construction primitives.

The table reveals that, in all instances, the subset m3 = {c1,c3} leads to
the shortest overall runtime when no construction primitives are used, suggest-
ing that the quantified constraints over Partition and AllDisjoint ought to be
satisfied first and then preserved. The rankings are relatively consistent across
the instances. The subset m; = {c1} is always a close runner-up, but is actually
overall the best one when we use a search-free construction primitive for the
Partition constraint, and thus for the quantified constraint c¢; over Partition.
This mechanisable empirical determination of II = m; confirms our human in-
tuition in our experiments of [2], but also revealed with 13 an interesting other
candidate for IT that we had not thought of.

14

6 Conclusion

In summary, we have first argued for the exploration of constraint-oriented neigh-
bourhoods in local search, where a set of constraints is picked before considering
the neighbouring configurations where those constraints may have a different
penalty. Given the semantics of a constraint, neighbourhoods consisting only of
configurations with decreased (or preserved, or increased) penalty can be rep-
resented intensionally as a new attribute for a constraint object. We have then
presented a framework using constraint-oriented neighbourhoods that allows dif-
ferent local search heuristics to be expressed, including multi-phase heuristics
where an automatically identifiable suitable subset of the constraints is satis-
fied upon a first phase and then preserved in a second phase. This simplifies
the design of local search algorithms compared to using just a variable-oriented
neighbourhood, while not incurring any runtime overhead.

In terms of related work, the constraint objects of [6,10] have the methods
getAssignDelta(z, v) and getSwapDelta(z;,z2) in their interface, returning the
penalty changes upon the moves x := v and x; :=: 9, respectively. Although it
is possible to construct decreasing/preserving/increasing neighbourhoods using
these methods, the signs of their results are not known in advance, so if one,
e.g., wants to construct the decreasing neighbourhood, then one may have to
iterate over many moves that turn out to be non-decreasing. This is in contrast
to our proposed attribute storing constraint-oriented neighbourhoods, as it is
known in advance that exploring the decreasing neighbourhood, say, will only
yield neighbourhoods with a lower penalty with respect to that constraint.

In [8], it is also suggested that global constraints can be used in local search
to generate heuristics to guide search; however, that work differs in that the
provided heuristics are defined in an ad-hoc manner for each constraint.

Our approach to identifying a subset of constraints that are satisfied in a
first phase and then preserved in a second phase was inspired by MultiTAC [7],
which automatically synthesises an instance-distribution-specific solver, given a
high-level model of some CSP and a set of training instances (or a generator
thereof). MultiTAC uses an offline brute-force approach to generate candidate
problem-specific heuristics from a set of heuristics described by a grammar, just
like our offline exhaustive enumeration of all candidate subsets.

In this paper we have started to explore new directions in automatic neigh-
bourhood generation for local search and there are many further areas for fu-
ture work. First, considering that flip, transfer, and swap moves essentially are
transactions over add and drop moves, it might be possible to assist the de-
signer of a constraint object by inferring the constraint-oriented neighbourhoods
for the former from the latter. Also, in our first approach, we just precom-
pute the sign of the penalty change in our constraint-oriented neighbourhoods,
but it might be possible to precompute the actual value of that change. This
would open opportunities for precomputing the penalty change of a conjunction
of constraints, rather than just a single constraint. For instance, noting that
Partition(X, Q) = AllDisjoint(X) A Union(X, Q), it would be useful to precom-
pute compositionally, in the spirit of the compositional calculi in [3,11], the

15

neighbourhoods of Partition in Figure 1 from those of AllDisjoint in the same
figure and those of Union (not listed here). Similarly for precomputing () {c}}
cell
in line 4 of Algorithm 2 as II,. Currently, that intersection must be calculated
dynamically, by iterating over the extensions under the current configuration of
these intensional sets. One could even improve that line 4 into choosing ¢ among
I N E,ﬁ, by statically precomputing the intersection of the moves preserving
the penalty of I and the moves decreasing the penalty of X, if that inter-
section is non-empty, thereby saving at each iteration the consideration of the
non-decreasing moves on Y. Finally, the neighbourhoods of Definition 4 should
be parameterised by the neighbourhood function to be used, rather than hard-
wiring the universal neighbourhood function N(C), and the programmer should
be supported in the choice of this parameter.

Acknowledgements. The second author thanks Sabanci University, for the re-
search time included in his Visiting Faculty Member position. Part of this work
was made when he was visited there by the first author, on a grant by Eric-
sson’s Research Foundation, or by both other authors, on ERASMUS Teacher
Exchange stipends: these sponsors are also gratefully acknowledged.

References

1. E. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial Optimization.
John Wiley & Sons, 1997.

2. M. Agren, P. Flener, and J. Pearson. Set variables and local search. In R. Barték
and M. Milano, editors, Proceedings of CP-AI-OR’05, volume 3524 of LNCS, pages
19-33. Springer-Verlag, 2005.

3. M. Agren, P. Flener, and J. Pearson. Inferring variable conflicts for local search. In
F. Benhamou, editor, Proceedings of CP’06, volume 4204 of LNCS, pages 665-669.
Springer-Verlag, 2006.

4. 1. Dott and P. Van Hentenryck. Scheduling social golfers locally. In R. Bartak and
M. Milano, editors, Proceedings of CP-AI-OR’05, volume 3524 of LNCS. Springer-
Verlag, 2005.

5. M. S. Fox. Constraint-Directed Search: A Case Study of Job-Shop Scheduling. PhD
thesis, Computer Science Department, Carnegie Mellon University, USA, Decem-
ber 1983.

6. L. Michel and P. Van Hentenryck. A constraint-based architecture for local search.
ACM SIGPLAN Notices, 37(11):101-110, 2002. Proceedings of OOPSLA’02.

7. S. Minton. Automatically configuring constraint satisfaction programs: A case
study. Constraints, 1(1-2):7-43, 1996.

8. A. Nareyek. Using global constraints for local search. In E. Freuder and R. Wallace,
editors, Constraint Programming and Large Scale Discrete Optimization, volume 57
of DIMACS: Series in Discrete Mathematics and Theoretical Computer Science,
pages 9-28. American Mathematical Society, 2001.

9. B. M. Smith, S. C. Brailsford, P. M. Hubbard, and H. P. Williams. The progressive
party problem: Integer linear programming and constraint programming compared.
Constraints, 1:119-138, 1996.

16

10.

11.

12.

P. Van Hentenryck and L. Michel. Constraint-Based Local Search. The MIT Press,
2005.

P. Van Hentenryck and L. Michel. Differentiable invariants. In F. Benhamou, edi-
tor, Proceedings of CP’06, volume 4204 of LNCS, pages 604-619. Springer-Verlag,
2006.

J. P. Walser. Integer Optimization by Local Search: A Domain-Independent Ap-
proach, volume 1637 of LNCS. Springer-Verlag, 1999.

17

A Constraint Primitives

A.1 Member Predicates

- member({AllDisjoint(X)}i)(m, k) = T ifand only if m € N(AllDisjoint(X))(k)
and penalty(AllDisjoint(X))(m) < penalty(AllDisjoint(X))(k).

function member({AllDisjoz'nt(/'\f)},lc)(m7 k)
match m with
drop(S,u)(k) — {T € X :u e k(T)} > 1

| flip(S, u,v)(k) —
member({AllDisjoint(X)},ﬁ)(drop(S, w)(k), k)N
member({ AllDisjoint(X)};)(add(S,v)(k), k)
| any_other — F
end match
end function

— member({AllDisjoint(X)}7)(m, k) = T if and only if m € N(AllDisjoint(X))(k)
and penalty(AllDisjoint(X))(m) = penalty(AllDisjoint(X)) (k).

function member({ AllDisjoint(X)}7)(m, k)
match m with
drop(S,u)(k) — {T e X:uek(T)} =1
| add(S,v)(k) — {T eX:vek(l)} =0

| flip(S,u, v)(k) —
member ({ AllDisjoint (X)}1)(drop(S,) (k), k)A
member ({ AllDisjoint (X)}})(add(S,v)(k), k)
V
member({ﬁllDisjoint(X)}k:,) (dmpgS, u)(k), k)N
member({ AllDisjoint(X)})(add(S,v)(k), k
|tmnsf€r(5,1§,{T)(k)]—>t’£‘ i) add (S, v)(F),)
| swap(S,u,v,T)(k) — T

end match
end function

— member({ AliDisjoint(X)}])(m, k) = T if and only if m € N (AllDisjoint(X))(k)
and penalty(AllDisjoint(X))(m) > penalty(AllDisjoint(X))(k).

function member({ AllDisjoint(X)}})(m, k)
match m with
add(S,v)(k) — {T e X:vek(l)} >0

| flip(S, u, v)(k) —
member({ AllDisjoint (X) };) (drop(S, uw)(k), k)A
member({ AllDisjoint(X)},)(add(S,v)(k), k)

18

| any_other — F

end match
end function

A.2 Iterate Primitives

— iterate({AllDisjoint(X)},ﬁ)(k, f) applies f to each m € N(AllDisjoint(X))(k)
such that penalty(AllDisjoint(X))(m) < penalty(AllDisjoint (X)) (k).

function iterate({ AllDisjoint(X)}5)(k, f)
for all S € X do
for all u € k(S) st. {T e X :uek(T)} >1do
f(drop(S, u)(k))
for allv e U\ k(S) st. {TeX:vek(T)} =0do
F(fip(S,u,0)(k))
end for
end for
end for
end function

— iterate({AllDisjoint(X)},ﬁ)(k, f) applies f to each m € N(AllDisjoint(X))(k)
such that penalty(AllDisjoint(X))(m) = penalty(AllDisjoint (X)) (k).

function iterate({ AllDisjoint(X)})(k, f)
for all S € X do
for all u € U do
if v € k(S) then
if {TeX:ueck(T)} =1 then
F(drop(S,u) (k)
for allv e U\ k(S) st. {T € X :vek(T)}|=0do
F(fiip(S,u,v)(k))
end for
elseif {T'€e X :u € k(T)}| > 1 then
for allv e U\ k(S) sit. {T € X :v e k(T)}| >0do
F(fiip(S,u,) (1))
end for
end if
for all T € X\ {S} do
if u ¢ k(T) then
f(transfer(S,u,T)(k))
for all v € kK(T) s.t. v ¢ k(S) do
f(swap(S, u, v, T)(k))
end for
end if
end for

19

else
if {TeX:uek(T)}|=0then
Fladd (S, u)(k))
end if
end if
end for
end for
end function

— iterate({AllDisjoint(X)},ﬁ)(k, f) applies f to each m € N(AllDisjoint(X))(k)
such that penalty(AllDisjoint(X))(m) > penalty(AllDisjoint (X)) (k).

function iterate({ AllDisjoint(X)}) (k, f)
for all S € X do
for allv e U\ k(S) sit. {TeX :vek(T)} >0do
#(add(S,v)(k))
for allu € k(S) st. {TeX:ueck(T)} =1do
F(fip(S,u,0)(k))
end for
end for
end for
end function

20

