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Abstract. In recent years, symmetry breaking for constraint satisfac-
tion problems (CSPs) has attracted considerable attention. Various gen-
eral schemes have been proposed to eliminate symmetries. In general,
these schemes may take exponential space or time to eliminate all the
symmetries. We identify several classes of CSPs that encompass many
practical problems and for which symmetry breaking for various forms
of value or variable interchangeability is tractable using dedicated search
procedures. We also show the limits of efficient symmetry breaking for
such dominance-detection schemes by proving intractability results for
some classes of CSPs.

1 Introduction

Many constraint satisfaction problems (CSPs) naturally exhibit symmetries.
Symmetry breaking may drastically improve performance [3,17,20,25]. An im-
portant contribution in this area has been the development of various general
schemes for symmetry breaking during search in CSPs (e.g., SBDS [2,15] and
SBDD [9, 13, 20], the latter being described briefly in Section 3). Unfortunately,
in general, these schemes may require exponential resources to break all the
symmetries. Indeed, some schemes may require exponential space to store all
the nogoods generated through symmetries, while others may take exponential
time to discover whether a partial assignment is symmetric to one of the existing
nogoods. As a consequence, practical applications often place limits on how many
nogoods can be stored and/or which symmetries to break. Other than eliminat-
ing symmetries by re-modelling the problem (see, e.g., [24]), another important
approach is to break symmetries by adding constraints before search starts (e.g.,
[8,19]). Unfortunately, in general, a super-exponential number of constraints
may be needed to break all the symmetries. For instance, the lex-leader scheme
of [8] adds one constraint per symmetry, but the number of symmetries is often
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super-exponential (an m X n matrix with fully interchangeable rows and columns
has m!- n! symmetries). As a consequence, practical applications often add only
some of these symmetry-breaking constraints (see, e.g., [11, 23]).

We approach symmetry breaking from a different, orthogonal standpoint.
Our goal is to identify classes of CSPs that are practically relevant and for which
symmetry breaking is tractable, i.e., polynomial in time and space, using dedi-
cated search procedures. We identify several such classes whose CSPs feature
various forms of value or variable interchangeability and encompass many prac-
tical problems. For some of them, symmetry breaking can even be performed
with a constant overhead with respect to both time and space at every node ex-
plored. We also introduce the new notions of existential and abstract nogoods,
which are used to derive the results for some of the CSP classes. We believe that
these notions are helpful to derive many other classes of tractable symmetries.
As such, this paper should be viewed only as a first step in this fascinating area.
Finally, we also show the limits of efficient symmetry breaking for dominance-
detection schemes like SBDD by proving intractability results for certain classes
of CSPs.

It is useful to contrast our approach with the research avenue pioneered
by Freuder [14] on value interchangeability. He also introduced various forms
of value interchangeability. However, his goal was to discover symmetries inside
CSPs and to remove them through a preprocessing reformulation. Unfortunately,
discovering symmetries in CSPs is not tractable for many interesting classes of
CSPs. This paper, in contrast, assumes that the symmetries in a CSP are known.
It focuses on how to exploit this knowledge during search to break symmetries
efficiently. In [28], we address the companion issue of how to automatically detect
symmetries in CSP models.

Ezample 1. Consider the scene allocation problem featured in [26]. It aims at
producing a movie (or a series) at minimal cost by deciding when to shoot which
scenes. Each scene involves a number of actors and at most five scenes a day can
be shot. All the actors of a scene must be present on the day the scene is shot.
The actors have fees representing the amount to be paid per day they spend in
the studio. An optimal solution can be modelled as an assignment of scenes to
days that minimizes the production costs. The exact days assigned to the scenes
have no importance and are fully interchangeable. What is important is how the
scenes are clustered. In fact, the original problem formulation only has a number,
say n, of days. It is the often necessary naming of these days while modelling
the problem, say as 1...n, that induces these symmetries. Our approach does
not aim at discovering this fact; it rather focuses on how to exploit it to break
the symmetries it induces.

This theoretical paper, which unites and extends® our work published in [27,
22], is structured as follows. First, in Section 2, we define CSPs and assignments

3 Sections 5.3 and 7.2 and the epilogue to Corollary 2 are new, while Section 5.2
was generalized. The originally omitted proofs of Propositions 1 and 2, Lemmas 3
and 5, and Theorems 3 and 4 are now provided, while the proofs of Theorem 1 and
Corollary 1 were expanded into greater detail.



in a non-standard way that gives rise to elegant formulations and proofs of our
results. Then, in Sections 3 to 7, we formally establish those results, for various
forms of value and/or variable interchangeability. Finally, Section 8 summarizes
the results and concludes this paper.

2 Preliminaries

Our definition of constraint satisfaction problems (CSPs), although it captures
their informal meaning, is non-standard but simplifies the proofs and other def-
initions considerably. The basic idea is that the set of constraints of a CSP is
abstracted by a Boolean function that returns true if all these constraints are
satisfied. We are not interested in the constraint structure. Solutions are then
also represented as functions, namely from the variables to the possible values.

Definition 1 (CSP, Assignment, Solution). A constraint satisfaction prob-
lem (CSP) is a triplet (V,D,C), where V denotes the set of variables, D de-
notes the set of possible values for these variables and is called their domain,
and C : (V — D) — Bool is a constraint that specifies which assignments of
values to the variables are solutions. An assignment for a CSP P = (V,D,C)
is a function o : 'V — D. If the domain D is the power-set of some other set,
called the universe, we say that the CSP is a set-CSP and has set variables,
while we call o a set assignment; otherwise, we say that the CSP has scalar
variables. A solution to a CSP P = (V,D,C) is an assignment o for P such
that C(o) = true. The set of all the solutions to a CSP P is denoted by Sol(P).

Algorithms to solve CSPs manipulate partial assignments. It is often im-
portant to reason about which variables are already assigned (the scope of the
partial assignment) and the set of values they are assigned to (the image of the
partial assignment).

Definition 2 (Partial Assignment, Scope, Image). A partial assignment
fora CSP P =(V,D,C) is a function o : W — D, where W C V. The scope of
a, denoted by scope(), is W. The image of «, denoted by image(«), is the set
{a(v) | v € scope(a)}. For each value d € image(c), we use a~1(d) to denote
the set {v | v € scope(a) & a(v) =d}. We denote the empty partial assignment
by e.

Note that every assignment and solution to a CSP P = (V, D, C) is a partial
assignment for P, with scope V. We often denote a partial assignment « by a
conjunction of equations, and then see it as a constraint:

vy, =avy) & - & v, = avy,)
where scope(a) = {viy,...,v;, }.

Ezxample 2. The partial assignment v; =1 & vy =2 & w3 = 3 represents the
function whose scope is {v1,v2,v3} and that assigns the value ¢ to v;.



Definition 3 (Extension of a Partial Assignment). A partial assignment
0 for a CSP P is an extension of a partial assignment a for P if scope(a) C
scope(8) and Yv € scope(a) : 0(v) = a(v).

Definition 4 (Completion of a Partial Assignment). A completion of a
partial assignment « for a CSP P = (V,D,C) is an extension 0 of o with
scope(f) = V. The set of all the completions of a for P is denoted by Comp(c, P).

Note that the set of all the completions of a solution ¢ is the singleton {o}.

Definition 5 (Nogood). A nogood for a CSP P is a partial assignment « for
P that cannot be extended into a solution, that is Comp(a, P) N Sol(P) = (.

The idea behind the noun ‘nogood’ is that no partial assignment should ever
extend any previously identified nogood.

Definition 6 (Violating a Nogood). A partial assignment 0 for a CSP P
violates a nogood o for P if 0 is an extension of c.

The verb ‘violates’ is justified here, as we also view a partial assignment, and
hence a nogood, as a constraint, with the form of a conjunction of equations.
Strictly speaking, this notion of nogood violation is redundant with the notion
of nogood extension, but we keep it for its more intuitive appeal.

Any extension of a nogood is itself a nogood:

Proposition 1. If a partial assignment 6 for a CSP P violates a nogood for P,
then 0 is itself a nogood for P.

Proof. Assume that a partial assignment 6 for P violates a nogood « for P and
assume that 6 is not a nogood for P. Then there exists a completion vy of § such
that v € Sol(P). Since 7 is a completion of § and 6 is an extension of «, we have,
by transitivity of C and =, that = is a completion of «. But then o cannot be a
nogood, since v € Sol(P). This is a contradiction, so # must be a nogood. a

Furthermore, a partial assignment that can only be extended into a nogood
is itself a nogood:

Proposition 2. Let P = (V,D,C) be a CSP where D = {dy,...,dn}. Let « be
a partial assignment for P with scope(a) = {vi,, ..., v, }. If every a & v, =
d; (1 <1i<m)is anogood for P, then « is itself a nogood for P.

Proof. Assume that « is not a nogood for P. Then there exists an extension
v of a such that v € Sol(P). But v must include o & wv;,,, = d; for some
1 <4 < m. But then 7 is also an extension of @ & w;,, = d; for that i. But
a & V4,4, = d; is a nogood for every 1 < i < m, so there cannot exist such a ~.
Hence « is a nogood for P. O



In other words, nogoods can be lifted from the children to their parent in a
search tree: when all the child nodes have been explored, their nogoods can be
forgotten and only the parent nogood needs to be kept.

With respect to the symmetry considered in this paper, in [6], two definitions
of symmetry are presented: solution symmetries, which are essentially bijections
on the set of variable-value pairs that make up assignments and preserve solu-
tions; and constraint symmetries, which are bijections on the structure of the
constraints in the problem. It is shown that the group of constraint symmetries
of a CSP is a subgroup (most often strict) of the group of solution symmetries.
In this paper, the symmetries are defined as subgroups of the set of solution
symmetries without reference to the constraint symmetries. Specific definitions
of the particular symmetry considered are given in the respective parts of the

paper.

3 Structural Symmetry Breaking for Variable and Value
Symmetry

We start our investigation by showing that there exists an efficient symmetry-
breaking algorithm for constraint satisfaction problems where both the set of
values and the set of variables can be partitioned into subsets such that, within
each subset, all variables or values, respectively, are interchangeable. We call
these problems piecewise value- and variable-interchangeable CSPs:

Definition 7 (Piecewise Bijection). Let S = U;P; such that the sets P; are
disjoint, i.e., P; N\ P; # 0 implies i = j. Then, we write S = Y. P; and call
>; Pi a partition of S. A bijection b: S — S is a piecewise bijection over ), P;
if and only if b(P;) = P;, where b(P;) = {b(e) | e € P;}.

Definition 8 (Piecewise Interchangeable CSP). A CSPP = (), Vi,>., D, C)
is a piecewise interchangeable CSP if and only if, for each solution o € Sol(P),
each piecewise bijection a over Y, Vi, and each piecewise bijection b overy_, Dy,

we have boo oa € Sol(P). If the only piecewise bijection over Y, Vi, (or >, D;)

is the identity, then the CSP is piecewise value-interchangeable (or variable-
interchangeable).

We will show how to break all symmetry in piecewise interchangeable CSPs
by means of Symmetry Breaking by Dominance Detection (SBDD) [9, 13]. SBDD
is a technique to break symmetries during search. The idea is as follows: At
any given choice point during search, we check whether the subtree rooted at
the current node maps, under application of symmetry, into another subtree
that has been fully explored earlier. If so, then the current node need not be
investigated further and can be pruned. Different ways to control and limit the
number of previously expanded subtrees that must be checked against have been
developed in [9,13]. With these results, the core procedure of any SBDD code
that determines its efficiency is the dominance detection algorithm that checks



whether a given partial (set) assignment is dominated by another one. Formally,
we define:

Definition 9 (Dominating an Assignment). Let P = (3, Vi, >, D, C) be
a piecewise interchangeable CSP. Assignment o dominates assignment (8 if and
only if there exist piecewise bijections a over Y, Vi and b over Y, D; such that
for every v € scope(a) we have B(a(v)) = b(a(v)).

Given two assignments « and (3 for a piecewise interchangeable CSP, we
call the problem of determining whether a dominates § the dominance detec-
tion problem. Consequently, if we can solve the dominance detection problem
efficiently, then we can also break symmetries efficiently.

The key idea to tackle the dominance detection problem for piecewise inter-
changeable CSPs consists in the introduction of structural abstractions: to model
a CSP, we need to uniquely label each value and each variable with a name. This
is, of course, problematic when certain variables and certain values are actually
interchangeable. We can rectify this by viewing each variable and each value as a
member of a symmetry class. In the beginning, these classes correspond directly
to the sets Vi and D;. When assignments are committed, though, some of those
initial symmetries are broken. Then, in order to check which CSP objects are
still interchangeable, we need to introduce subclasses of the original symmetry
classes. We will see that we can detect the remaining symmetries by labelling
each of those subclasses with an appropriate signature that is defined by the set
of initial symmetries and the given assignments. We will see also that it is really
these signatures that capture our intuitive wish to abstract from the CSP model
at hand to the actual structure of the problem.

3.1 Signatures
First consider the following example.

Ezample 3. Take variables V' = {vy,...,vs} over the domain D = {dy,...,ds}.
Assume that the first four and the last four variables are interchangeable: V1 =
{v1,...,va} and Vo = {vs, ..., vs}. Assume that the first three and the last three
values are interchangeable: D1 = {dy,...,ds} and Dy = {d4,...,ds}. Consider
the following two partial assignments (see Figure 1(a)): oy = (v1 =dy & va =
d1 & 1}3:d2 & U6:d5 & U7:d1 & ’Ug:d2> andagz(m:dg & Vg =
dl & U3:d2 & ’U4=d2 & U5=d1 & Uﬁzdﬁ & 1}7:d2 & ngdg).
When looking at a4, we see that:

1. There is one value (namely d;) in D; that is taken by two variables in V'
and one variable in V5.

2. There is one value (namely do) in D; that is taken by one variable in V3
and one variable in V.

3. There is one value (namely ds) in Do that is taken by one variable in V5.

On the other hand, in s, we see that:
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Fig. 1. Part (a) illustrates assignments o1 and as. Part (b) gives the signatures for
each value, links pairs of values where the one in assignment «; dominates the one in
a2, and designates by solid lines a perfect matching that proves that a; dominates aa.

I. There is one value (namely ds) in D; that is taken by two variables in V'
and two variables in V.
II. There is one value (namely d;) in D; that is taken by one variable in V
and one variable in V.
ITII. There is one value (namely dg) in Dy that is taken by one variable in V
and one variable in V.

Lining up 1-I (di — da, {v1,v2} = {vs, v}, {7} = {v7,08}), 211 (d2 — da,
{vs} — {va}, {vs} — {vs}), and 3-III (d5 +— dg, {vs} — {ve}), we see that as
is structurally a partial assignment extended from «;, or, in other words, that
oy dominates agy (see also Figure 1(b)).

What we have done in this small example is to abstract from the given model
and the (arbitrary) names of the variables and values to the actual structure of



the problem. That is, instead of talking about specific variables and values, we
have considered members of classes. Specifically, for each partial assignment, we
implicitly assigned each value a signature that captures by how many members
of each variable-symmetry class it was taken. For instance, in a1, the value d;
has the signature (2 x V1,1 x V), or, in shorter writing, the signature of d
under o 18 $iga, (d1) = (2,1). Under aq, on the other hand, the signature of do
is $iga,(d2) = (2,2). Consequently, ds in ay can be viewed as more specialized
than d; in ap, or one may also say that d; in oy dominates do in as. In this
terminology, d; in ao has signature sig,,(d;) = (1,1) and therefore dominates
dy in ;. Note that siga, (dg) is also (1,1), but that dg in as does not dominate
dy in aq since dg € Dy whereas d; € D;. In general:

Definition 10 (Dominating a Value). A value d in a partial assignment «
dominates a value e in a partial assignment 3 if and only if d and e belong to
the same value-symmetry class and sig,(d) < sigg(e).*

A value d in a partial assignment o is structurally equivalent to a value e in
a partial assignment B if and only if d and e belong to the same value-symmetry
class and sig.(d) = sigga(e).

In the following sub-section, we will show how these notions of dominance and
structural equivalence can be exploited to devise a polynomial-time algorithm
that solves the dominance detection problem on piecewise interchangeable CSPs.

3.2 Dominance Detection Using Signatures

The following lemma shows how signature abstractions can help to detect dom-
inance relations among partial assignments:

Lemma 1. A partial assignment o dominates another partial assignment (3 in
a piecewise interchangeable CSP if and only if there exists a piecewise bijection

b over D =%, D; such that d in o dominates b(d) in (3 for every d € D.

Proof. First, assume that o dominates 3. Then, there exist piecewise bijections
a over » . Vi and b over ), D; such that for every v € scope(a) we have
B(a(v)) = b(a(v)). Since both v and a(v) belong to the same symmetry class,
we have sigqo(d) < sigg(b(d)) for all values d € D, which is the same as to say
that d in o dominates b(d) in S.

Second, assume that there exists a piecewise bijection b over ), D; such that
siga(d) < sigg(b(d)) for every d € D. Then, since each variable is assigned to
at most one value, there exists a piecewise bijection a over ), Vi such that
B(a(v)) = b(a(v)) for every v € scope(a). Thus, we have that o dominates 3.

O

4 The <-relation on vectors is defined as the usual component-wise comparison that
yields the so-called dominance ordering, which is different from a lexicographic or-
dering.



Consequently, we have that a dominates 3 if and only if there exists a perfect
matching in a bipartite graph where the edges are defined by the signature
relation of values (see Figure 1(b)). Let us denote by D’ a set of duplicates of
the values in D obtained by appending a prime sign to their names (that is,
D' :={d |d e D}).

Definition 11 (Dominance Detection Graph). Given two partial assign-
ments o and 3, the dominance detection graph DDG(a, ) is (DUD’, E), where
E:={(d,¢) | din o dominates e in 8} denotes the set of arcs.

Theorem 1. The dominance detection problem between two partial assignments
a and B for a piecewise interchangeable CSP has complexity O(M + m? +mn),
where M = O(m??®) is the time needed to determine whether there exists a
perfect matching in DDG(«, ), with m being the number of values and n the
number of variables. Hence all the value and variable symmetries of a piecewise
interchangeable CSP can be broken with a polynomial time overhead at every
node explored.

Proof. With Lemma 1, it is clear that the dominance detection problem can be
solved basically by determining whether there exists a perfect bipartite matching
in DDG(«, ). The additional complexity denoted in the theorem is due to the
necessity of constructing DDG (c, 3) first. This can be achieved in time O(nm?),
which already proves that symmetry breaking in this scenario is tractable. How-
ever, the runtime can be improved to the complexity that is claimed here by
using sparse representations of signatures. Instead of writing down entire signa-
tures, for each value we hold a sparse list that only contains the non-zero entries
of a signature, together with the information to which variable partition an entry
in the sparse list belongs. To set up this sparse representation, we first order the
variable instantiations in a given partial assignment according to the partition
that the corresponding variable belongs to. This can be done in time linear in the
number of variables, since this is also the maximum number of symmetry classes
that can exist. In this order, we now scan through the partial assignments and
set up the sparse signatures. Then, we iterate through the signatures of all the
values in o and compare them with all the signatures of the values in 5. With
the sparse representation of signatures, this takes time O(m(|a| + |8])). O

Interestingly, it can also be shown that every bipartite graph can also be
viewed as a dominance detection graph of a CSP and assignments « and 3 that
can be determined in time linear in the size of the given graph. Therefore, a
perfect bipartite matching exists if and only if a dominates @, which makes
the dominance detection problem at least as hard as bipartite matching. In
other words, we can show that dominance detection takes time T, where T €
2(M) N O(M + m? + mn).

In [12] we have provided a static counterpart of the here considered dynamic
structural symmetry breaking for piecewise interchangeable CSPs, that is we
have exploited the concept of signature to devise a set of symmetry-breaking
constraints that break all the considered symmetries.



Theorem 1 trivially has two interesting consequences. First, dropping the
assumed piecewise value interchangeability or tightening the assumed piecewise
interchangeabilities into full interchangeabilities will not worsen its tractability
result, hence all the symmetries of fully or piecewise wariable-interchangeable
CSPs and of fully value- and variable-interchangeable CSPs can be broken with
a polynomial time overhead at every node explored. Conversely, when dropping
the assumed piecewise variable interchangeability, we achieve tractability for the
symmetries of fully and piecewise value-interchangeable CSPs. We will study
these special cases later where we will devise highly efficient symmetry breaking
methods that do not require complex matchings to be solved and that minimize
the computational overhead needed for symmetry breaking in these special cases.

Second, dropping the assumed piecewise value interchangeability and switch-
ing to set-CSPs will not worsen the tractability result. Indeed, set variables that
take subsets of a universe of non-interchangeable values can be seen as scalar
variables that take scalar values from a domain of non-interchangeable values,
hence the tractability results of symmetry breaking are those for fully or piece-
wise variable interchangeability of (scalar) CSPs: all the symmetries of fully or
piecewise variable-interchangeable set-CSPs can be broken with a polynomial
time overhead at every node explored.

4 Symmetry-Based Filtering

With Theorem 1, we can break all the symmetries of a piecewise interchange-
able CSP in polynomial time when using a symmetry-breaking by dominance
detection (SBDD) approach [9,13]. What is annoying in this setting is that we
still have to check at every choice point to see whether it is not dominated by
one that was previously expanded, that is we still have to touch the garbage in
order to see that it is garbage. We will now develop an algorithm that does not
suffer from this disadvantage.

We achieve this goal by using dominance detection also for filtering rather
than just for pruning.® A brute-force approach could try assignments out and
use the dominance detection algorithm above to perform filtering as well. This
procedure would lead to a very poor runtime, though. In the following, we will
show that filtering based on symmetry can be performed much more efficiently.

Within SBDD, there exists a natural distinction between two types of filtering
that apply: The first consists in making sure that none of the newly created
children are symmetric to a node that was fully expanded before the node that
is currently branching off. When applying unary branching constraints (which we
assume are used here), this can be achieved by shrinking the domains of variables
accordingly. The other, fundamentally different type of “filtering” consists in
the creation of children that are also not symmetric to each other. Both types
need to be addressed to achieve a symmetry-free search tree (which corresponds

® With ‘filtering’, we refer to the idea of domain reduction in constraint program-
ming, whereas with ‘pruning’, we refer to the detection of a sufficient reason for
backtracking.
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to the GE-trees in [21]). We distinguish the two types of filtering by naming
them differently: symmetric-ancestor based filtering and symmetric-sibling based
filtering.

4.1 Symmetric-Ancestor Based Filtering

The goal of symmetric-ancestor based filtering is to shrink the domains such
that instantiating a variable with one of its domain values will not result in the
creation of a search node that is symmetric to one that was previously expanded.

Definition 12 (Ancestor-Symmetry Resistance). Given a depth-first-search
tree T, we say that a choice point B (associated with its homonymous partial
assignment [ that captures previously committed unary branching decisions) is
ancestor-symmetry resistant if and only if for all previously fully expanded nodes
a € T (where «v is called an ancestor of §) and for all variables v and values
d € Dom(v) we have that « does not dominate 8 & (v =d).

Assume that we are currently investigating choice point § and that « is some
ancestor node that does not dominate 3. Observe that instantiating one more
variable v € Vi, for some k by setting v — e € D; for some [ will change only the
signature of e from sigg(e) to sigg(e) +er, where ey, denotes the unit vector with
a 1 in the kth component. We set 5’ := 8 & (v =e). Then, Gy := DDG(a, §)
and G2 := DDG(a, ') only differ in that the latter bipartite graph may contain
some additional edges that must all be incident to ¢’ in the right partition. If
(G2 contains an m-matching, this matching must contain exactly one of those
additional edges. Consequently, if o dominates ', then G; must contain an
m — l-matching. Only if this is the case, work needs to be done to make (3
ancestor-symmetry resistant with respect to a.

So let us assume that (G; contains an m — l-matching. Provided with that
matching, using some straightforward matching theory we can identify efficiently
those and only those additional edges that would allow us to transform the
existing matching into a perfect one (for an introduction to matching theory we
refer to [1]): a matching can be viewed as a flow in some network that closely
corresponds to the bipartite graph. We consider the usual residual network with
respect to that flow that has an additional source node s that connects to all
nodes in the first partition, and a sink node ¢ that is connected from all nodes
in the second partition. The capacities of the residual network are given by the
the residual capacity of edges after the flow has been routed, including reverse
edges for edges with positive flow.

Then, a maximum matching (corresponding to a maximum flow) defines two
cuts. The first is given by the nodes that are reachable from the source in the
residual network. If we denote this set with S, then (S, S¢) is an s-t-cut. The
second cut is given by the set of nodes from which the sink is reachable in the
residual network. If we denote this set with 7', then (7, T) is also an s-t-cut.
Note that both cuts can be computed in time linear in the size of the given
networks after the maximum matching has been computed.

11



Now, the core observation is that, given those two cuts, the critical edges are
exactly those that run from SN D to T'ND’: clearly, adding such an edge yields
an improving path in the residual network and therefore an m-matching. On the
other hand, note that T C S¢ and S C T¢. Any edge added from S to S¢ \T
would leave the cut (T, T) untouched, which proves that no such an edge can
improve the matching. Edges that run from 7¢ \ S to T follow analogously.

Among those critical edges that, if added, would allow us to construct an
m~matching, the only ones that we need to consider are those that run between
nodes d and e’ with d,e € D, for some [ and for which there exists k such that
siga(d) < sigg(e) + eg. If and only if we find such a pair of nodes, a single extra
assignment added to 3 will result in a successful dominance detection. Precisely,
every assignment of e to a previously unassigned variable v € V will result
in a dominated choice point. Thus, if we remove e from the domain of v for
every unassigned v € Vi, we keep the unique parts of the search space and we
never produce any choice points that are symmetric to one that was expanded
previously to (.

With Theorem 1, the runtime needed for the initial value-matching algorithm
is bounded by O(m??® + mn). Then, the entire filtering algorithm runs in time
O(m? + mn). Therefore, since within SBDD at most n(m — 1) ancestor nodes
need to be considered, we can prove the following theorem:

Theorem 2. For a piecewise interchangeable CSP, we can achieve ancestor-
symmetry resistance for a given search node in time O(nm3® + n?m?).

4.2 Symmetric-Sibling Based Filtering

To achieve full symmetry prevention, we also need to guarantee that newly
created siblings are not symmetric to each other. Therefore, after choosing the
next variable to be assigned, but before branching on it, we need to perform one
more “filtering” step (it is actually more of an implicit pruning step), where we
choose a single representative value out of each equivalence class of values that,
when assigned to the chosen variable, would result in the creation of symmetric
choice points. Due to the fact that, whenever a sibling dominates another one,
they both must already be structurally equivalent (see Definition 10), we can
avoid producing symmetric siblings by choosing exactly one representative value
among those that are structurally equivalent. The complexity of this filtering
step is dominated by that of symmetric-ancestor based filtering.

Putting ancestor and sibling-based filtering together, we have completed our
development of an effective symmetry-breaking algorithm for piecewise inter-
changeable CSPs that runs in polynomial time. Note that the practical per-
formance of the algorithms sketched can be enhanced in practice: for example,
it is fully sufficient to check against previously expanded nodes for which an
m — 1 — h-maximum matching was found only after variable instantiations to h
different values have been committed. And, as usual, by considering incremental
updates of matchings, memory can be traded for CPU-time.
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5 Fast Algorithms to Break Value Symmetry

In this section, we review the special case of piecewise interchangeable CSPs with
no variable symmetry, which we call piecewise value-interchangeable CSPs. With
the previous results, we know already that symmetry breaking can be achieved
in polynomial time. Now, we focus on the development of algorithms that break
value symmetry with minimal overhead. First, in Section 5.1, we describe our
new approach in full detail on the class of fully value-interchangeable CSPs,
showing how it leads to the known result [16] that all their value symmetries can
be broken by a dedicated search procedure with a constant overhead with respect
to both time and space at every node explored (Theorem 5). Then, in Section 5.2,
we show that this result actually generalises to piecewise value-interchangeable
CSPs (Theorem 6). Finally, in Section 5.3, we show, again in full detail, that the
same result even holds for fully and piecewise value-interchangeable set-CSPs
(Theorems 7 and 8, respectively).

5.1 Fully Value-Interchangeable CSPs

When all values are interchangeable and no variable symmetry is present, we
speak of a fully value-interchangeable CSP.

Definition 13 (Fully Value-Interchangeable CSP). A CSP P = (V,D,C)
is a fully value-interchangeable CSP if, for each solution o € Sol(P) and each
bijection b over D, we have bo o € Sol(P).

In the following, we show that in this case symmetry breaking can be per-
formed with constant overhead with respect to both time and space at every
node explored. Our method is based on nogoods.

The following theorem gives a fundamental characterization of nogoods for
fully value-interchangeable CSPs. It states that nogoods are preserved under
value interchanges:

Theorem 3. Let « be a nogood for a fully value-interchangeable P = (V, D, C)
and let b: D — D be a bijection. Then bo « is a nogood for P.

Proof. Let g be a completion of b o o and assume that g € Sol(P). Since b is a
bijection, we have b=! o g € Sol(P). But (b=tog)(v) = (b"to(boa))(v) = a(v),
for all v € scope(a), by the definition of a completion, that is « can be extended
into a solution. This contradicts the fact that « is a nogood. Hence b o v cannot
be extended into a solution and is thus actually a nogood. a

The closure of a nogood « for a fully value-interchangeable CSP is the set of
nogoods obtained from « by applying each possible value interchange, or value
symmetry, to a:

Definition 14 (Closure of a Nogood). Let a be a nogood for a fully value-
interchangeable P = (V, D, C). The closure of « for P, denoted by Closure(a, P),
is the set {boa | b is a bijection over D}.
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The main idea of our approach is to try and abstract such closures of nogoods,
so that their representation takes polynomial space and that membership to a
closure can be tested during search in polynomial time. Using partial evaluation,
it will then become possible to write a search procedure that breaks all the value
symmetries by never extending any member of the closures of all the nogoods
generated during search.

Existential Nogoods and Abstract Nogoods. We now show that the clo-
sure of a nogood for a fully value-interchangeable CSP can be characterized
compactly. We first introduce the concept of existential nogood, which simplifies
the proofs and intuitions. A nogood can be generalized by introducing distinct
existentially quantified variables for each value in its image. This can be seen as
inverse Skolemization.

Definition 15 (Existential Nogood). Let a be a nogood for a fully value-
interchangeable P = (V, D, C), with image(«) = {du,...,di}. The existential
nogood of a for P, denoted by Enogood(a,P), is the set of all functions v :
scope(a) — D satisfying the condition

Jer,...,ex €D Vi€l k:Yv; € a”M(d;) 1 v(vj) = e; & alldiff(e1,...,ex)
where alldiff (a1, ..., a,) holds if all the a; are different values.

By abuse of language, we identify an existential nogood, which is a set of
functions, with the condition that its members have to satisfy.

Ezample 4. Consider a nogood (3, written as a conjunction of equations:
ﬁ(’Ul) =1%& ﬁ(vg) =2 & ﬁ(vg) =3 & ﬁ(’l}4) =1%& ﬁ(’vg)) =2
The existential nogood of 3 is the condition

Jdej,ea,e3 € Diy(v) =e1 & y(va) =ex & y(vz) =e3
& y(va) =e1 & y(vs) = e2 & alldiff (e, e2,¢e3)

or, more precisely, the set of functions v : scope(3) — D satisfying this condition.

The following lemma indicates that an existential nogood precisely captures
the closure of its nogood:

Lemma 2. Let « be a nogood for a fully value-interchangeable CSP P: Enogood (o, P) =
Closure(a, P).

Proof. Let image(a) = {d1,...,d}. By definition of the image, we have that
Viel...k:Yv€a Md):a(vy) =d; & alldiff (dy,...,dy).

We first show that Closure(a, P) C Enogood(c, P). Let v € Closure(c, P). This
means that there exists a bijection b such that v = b o . Thus, v satisfies

Viel. . k:Vo;ea ' (d):v(v;) =b(d;) & alldiff (b(dy),...,b(dy))

14



by definition of a bijection, and hence v € Enogood(c, P).
We now show that Enogood(c,P) C Closure(a, P). Let 6 € Enogood(a, P).
Then there exist some values a1, ...,a; € D such that

Viel.. . k:VYv;€a Md):0(v;) =a; & alldiff(ar,...,ax).

Since a1, ..., ay are all different, there exists a bijection b satisfying Vi € 1...k :
b(d;) = a;. Hence 0 can be rewritten as bo o and 6 € Closure(a, P). O

It is not obvious that membership to an existential nogood can be tested
efficiently since it involves an existential quantification. However, due to the
nature of the underlying conditions, it is possible to eliminate the existential
variables by equating all the universally quantified variables that have the same
value and by selecting, for the alldiff condition, a representative variable v,, for
each set a~!(d;). This is precisely the motivation for the concept of abstract
nogoods, defined next:

Definition 16 (Abstract Nogood). Let « be a nogood for a fully value-
interchangeable P = (V,D,C). Let image(a) = {di,...,dr} and let v,, €
a1(d;), for 1 < i < k. The abstract nogood of a with respect to P, denoted
by Anogood(c, P), is the set of all functions v : scope(a) — D satisfying the
condition

Viel...k:Yv; €at(d;):y(v;) =v(vy,) & alldiff (Y(vr,)s -, (vr))-

Again, by abuse of language, we identify an abstract nogood, which is a set
of functions, with the condition that its members have to satisfy.

Ezample 5. In the existential nogood of § in Example 4, the variables e, es, and
e3 can be eliminated to produce as abstract nogood of G the following condition:

Y(v1) =(va) & v(v2) =(vs) & alldiff (v(v1),7(v2),7(v3))
or, more precisely, the set of functions v : scope(3) — D satisfying this condition.

The following lemma indicates that an abstract nogood precisely captures its
existential nogood:

Lemma 3. Let a be a nogood for a fully value-interchangeable CSP P: Enogood(a, P) =
Anogood(a, P).

Proof. Let image(a) = {dy,...,dy}.
We first show that Fnogood(a, P) C Anogood(c, P). Let v € Enogood(c, P).
Then there exist some values aq,...,ar € D such that

Viel.. . k:VYv€a M(d):y(vj) =a; & alldiff(ar,...,ax).
We must show that v € Anogood(a, P), i.e., that v satisfies the formula

Viel...k:VYv; € a  (dy): y(v;) = v(vr,) & alldiff (y(vyy),- - Y(vry))
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where v, € a~!(d;), for 1 < i < k. Since ay,...,a; are all different, there
exists a bijection b satisfying Vi € 1...k : b(d;) = a;. Hence v can be written
as boa. Since Vi € 1...k : a(vy,) = d;, we have that vy(v,,) = a; and hence
v € Anogood(a, P).

We now show that Anogood(a, P) C Enogood(a, P). Let v € Anogood (e, P).
This means that

Viel...k:VYo; € a (d;): y(v;) = y(vr,) & alldiff (y(vy,), .- Y(vry))

where v,., € a71(d;), for 1 < i < k. We must show that v € Enogood(c, P), i.e.,
that there exist some values ai,...,ar € D such that

Viel...k:Yv€a Hd):v(vj) =a; & alldiff(ar,...,ax).

Since y(vry ), - . ., ¥(vy, ) are all different and each vy(v,,) € D, we may pick v(vy,)
as our choice for a;. Hence v € Enogood(c, P). O

For simplicity, we will often denote the abstract nogood condition in terms
of another global condition:

Viel...k: allequal(y(v;) | v; € o (dy)) & alldiff (Y(vyy), .-+ Y(vry))
where allequal(ay, ..., ay,) holds if all the a; are the same value.

Ezxample 6. The abstract nogood of  in Example 5 can now be rewritten as:

allequal (y(v1),7(va)) & allequal(y(va),v(v5)) & alldiff (v(v1),v(v2),¥(v3))

Testing Violation of Nogoods. We now show that membership to the closure
of a nogood can be tested in linear time.

Lemma 4. Let o« be a nogood for a fully value-interchangeable CSP P and let
0 be a partial assignment for P. There exists a linear-time algorithm to test
whether 6 violates any nogood in Closure(a, P).

Proof. Direct consequence of Lemmas 2 and 3 as well as of the fact that the size
of an abstract nogood condition is linear in |V|. So it suffices to test whether 6
satisfies the abstract nogood condition of o whenever scope(a) C scope(d). O

Lemma 5. Let P = (V,D,C) be a fully value-interchangeable CSP with D =
{di,...,dm}. Let a be a partial assignment for P with scope(a) = {viy,...,vi,}.
If every o = a & (v, = d;) (1 <i <m) is a nogood for P, then:

1. « is itself a nogood for P;
2. if a partial assignment 0 for P violates a nogood in | J;~., Closure(c;, P), then
0 violates a nogood in Closure(a,P).

Proof. The result 1 follows from Proposition 2, which holds for CSPs in general.
Let 6; € Closure(c;, P), hence 6; = b o «; for some bijection b : D — D. Since
a; extends a, it follows that bo « € Closure(a, P) and that if 6 violates 6;, then
0 violates b o o. Hence the result 2. a
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Maintaining Nogoods. Lemma 5 indicates that abstract nogoods are needed
only for the current frontier nodes of the search tree (i.e., the closed nodes
whose parents are open). Once its child nodes are explored, the abstract nogood
of a parent node subsumes the abstract nogoods of these child nodes. Hence,
maintaining the nogood takes space O(|F||V|), where F is the set of frontier
nodes. We now formalize this result using variable decomposition trees.

Definition 17 (Variable Decomposition Tree). A variable decomposition
tree for a CSP P = (V,D,C) is a search tree where nodes represent partial as-
signments for P and nodes are decomposed as follows: given a node representing
a partial assignment o, where scope(a) = {vi,,...,v;, }, its child nodes represent
the partial assignments a; = a & (vik_Jrl =d;) for all d; € D and some variable
Vip,, €V \ scope(a).

Note that variable decomposition trees capture both static and dynamic vari-
able orderings, as well as a variety of search strategies (depth-first search, limited-
discrepancy search, etc).

Theorem 4. Let P be a fully value-interchangeable CSP and let F be the set of
frontier nodes in a variable decomposition tree for P.

1. Value symmetry breaking for P requires O(|F||V|) space for storing the no-
goods.

2. Testing if a partial assignment violates a nogood takes O(|F||V|?) time in
the worst case.

Proof. The result 1 follows from the fact that the size of an abstract nogood is
linear in |V|. The result 2 follows from the result 1 and Lemma 4. O

Simplification. The result above can be strengthened considerably, using par-
tial evaluation and the structure of abstract nogoods. We now show that
search procedures exploring a variable decomposition tree for a fully value-
interchangeable CSP can remove all the value symmetries while causing only
constant overhead with respect to both time and space at every node explored.
Before presenting the theoretical results, we illustrate the idea using an exam-
ple with depth-first search. The basic intuition comes from the structure of the
abstract nogoods.

Ezample 7. Consider the partial assignment
Olv1) =1 & B(v) =2 & O(v3) =3 & O(vg) =1 & O(vs) =2

and assume that depth-first search tries next to label variable vg, whose set of
possible values is 1...10. The failure of vg = 1 produces the abstract nogood

allequal(y(v1),7(va),7(v6)) & allequal(y(v2),v(vs)) & alldiff (v(v1),v(v2),7(v3)).

Since vq,...,v5 remain instantiated when the next value is tried for wvg, the
abstract nogood for this part of this next branch partially evaluates to v(vg) = 1,
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imposing that vg be labelled with a value different from 1. The failures of vg = 2
and vg = 3 produce similar abstract nogoods for the other values already used
in €. Now consider the values not already used in 6 and observe what happens
for a failed labelling of vg with a value in 4...10, say 6. The abstract nogood
then is

allequal(y(v1),7v(vse)) & allequal(y(v2),v(vs)) & alldiff (v(v1),7(v2),v(v3), ¥(ve))

which partially evaluates to alldiff (1,2,3,~v(vs)). The disjunction of the four
partially evaluated abstract nogoods obtained so far is the condition

Y(e) =1 V v(vs) =2 V y(vs) =3 V alldiff (1,2,3,v(ve))

which must not be satisfied by any labelling of vg. It follows that vg need only
be labelled with the previously used values in 1...3 or with exactly one new
value in 4...10.

In other words, in a variable decomposition tree, only some of the child
nodes of a partial assignment € need to be explored, namely those that label
the next variable v;,,, with a value in image(6) or with exactly one other value.
Note that this result is independent of the set of constraints. It is the essence of
the labelling procedure for graph coloring in [16] and in the scene allocation
problem in [26]. This procedure, which breaks all the value symmetries for fully
value-interchangeable CSPs, is formalized in Figure 2 as procedure fValIlabel.
It uses a function Failure(P, ), which returns false if at least one extension of
the partial assignment 6 is a solution to the CSP P = (V, D, C). In other words,
it satisfies the property

Failure(P,0) = V3 € Comp(8,P) . -C(3).

To prove the correctness of fValIlabel and related search procedures, it is useful
to introduce the concept of compact variable decomposition tree:

Definition 18 (Compact Variable Decomposition Tree). A compact vari-
able decomposition tree for a fully value-interchangeable CSP P = (V,D,C)is
a search tree where nodes represent partial assignments for P and nodes are de-
composed as follows: given a node representing a partial assignment «, where
scope(a) = {vs, ..., v }, its child nodes represent the partial assignments o; =
a & (vy,, =d,) for all d, € image(a) and the partial assignment o; = a &
(Vigy, = dn) for some d,, € D\ image(c), if D\ image(a) is not empty, for some
variable v;, , € V' \ scope(a).

Compact variable decomposition trees are complete:

Lemma 6. Let S be the set of assignments in a compact variable decomposition

tree for a fully value interchangeable CSP P = (V, D,C). Then the closure {boa |
a€ S andb: D — D is a bijection} is equal to Sol(P).

Proof. This follows directly from the examination above of the nogoods. ad
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bool fValIlabel(P) {
return fValllabelA(P,e);

}
bool fValIlabelA((V,D,C),0) {

if scope(f) =V then

return C(0);
select v in V' \ scope(0);
A := image(0);
if A% D then

select f in D\ A; A := AU{f};
forall(d € A)

0 =0 & v=d;

if = Failure((V,D,C),0') then

if £ValllabelA((V,D,C),0") then
return true;

return false;

Fig. 2. A labeling procedure for fully value-interchangeable CSPs

A compact variable decomposition tree never extends any nogood generated
during search:

Lemma 7. Let T be a compact variable decomposition tree for a fully value-
interchangeable CSP P. The partial assignment of a node in T never extends
any nogood generated during the exploration of T (except the one it possibly
generates).

Proof. By Lemma 5, it suffices to show that a partial assignment 6 never extends
a nogood generated by its siblings or the siblings of one of its ancestors in the
tree. The proof is by induction on the depth of the tree. At the depth of 0, the
result follows from the inspections of the nogood as discussed earlier. Consider a
depth dp’ < dp and a nogood « generated by one of the left or right branches at
that depth. We can restrict our attention to the projection of 6 to the variables
instantiated at that depth, i.e., we can restrict our attention to 6 : scope(a) — D
satisfying Vv € scope(a) : 6'(v) = 6(v).

We show that 0" ¢ Closure(a, P). Let v be the variable assigned at depth dp’.
Observe that there exists a partial assignment o such that « = o' & (v =e;)
and 0" = o & (v = eg), for some e1,es € D and e; # es. By definition
of a compact variable decomposition tree, the values e; and e; must belong to
image(a/) U {d}, where d ¢ image(a).

Consider the case where ej,e; € image(a). This means that there exist
v;,vj € scope(a) such that a(v) = a(v;) # a(v;) and ' (v) = 0'(v;) # 0'(v;). If
0" € Closure(a, P), then it can be rewritten as ' = b o « for some bijection b.
Hence ¢'(v) = ¢’ (v;), which is impossible.

Assume now that e; € image(a’) and ep = d. It follows that a(v) = a(v;) for
some v; € scope(a’) and that 0'~1(d) = {v}. If 0’ € Closure(a, P), then 6 = boa
for some bijection. Hence ¢'(v) = 6’(v;), which is impossible.
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Assume finally that ey € image(a’) and e; = d. Then, a~(d) = {v} and
0'(v) = 0'(v;) for some v; € scope(a’). It 0’ € Closure(a, P), then § = bo « for
some bijection b. Hence, 0'(v) = b(d) & 6'71(b(d)) = {v}, which is impossible
since 6'(v) = 0'(v;) for some v; € scope(a’). O

We can now establish the correctness of the procedure fValIlabel:

Theorem 5. Procedure £ValIlabel breaks all the value symmetries of a fully
value-interchangeable CSP with a constant overhead with respect to both time and
space at every node explored, i.e., it never extends any member of the closure of
any nogood generated during search.

Proof. The result follows directly from Lemmas 4 to 7. a

Other search strategies, e.g., limited-discrepancy search, can also be adapted
to remove all the value symmetries of fully value-interchangeable CSPs with a
constant overhead with respect to both time and space at every node explored.
Experimental results for this known labelling procedure have been reported else-
where, e.g., in [16, 26].

5.2 Piecewise Value-Interchangeable CSPs

We now derive generalizations for piecewise value-interchangeable CSPs of the
previous results.

Definition 19 (Piecewise Value-Interchangeable CSP). A CSPP = (V,>", D;,C)
is a piecewise value-interchangeable CSP if, for each solution o € Sol(P) and
each piecewise bijection b over Y, D;, we have bo o € Sol(P).

Ezample 8. For scene allocation (see Example 1), we can imagine a version of
the problem where the days are divided into morning and afternoon sessions.
The actors probably have strong preferences (and thus different fees for these
sessions), but the day of the session may still not matter.

We state the main definitions and theorems only, since the derivation is
similar to the one for fully value-interchangeable CSPs.

Definition 20 (Closure of a Nogood). Let a be a nogood for a piecewise
value-interchangeable CSP P = (V, >, Dy, C). The closure of a for P, denoted
by Closure(c, P), is the set {bo o | b is a piecewise bijection over ), D;}.

We now define abstract nogoods for piecewise value-interchangeable CSPs.
The key intuition is to separate the values from each D.

Definition 21 (Abstract Nogood). Let a be a nogood for a piecewise value-
interchangeable CSP P = (V,D,C), where D = Y, D;. Let image(a) =
{di,....d.,....di,...,d5 }, where d. € Dy, and let v € o~ '(dl), for 1 <
1 < s; and 1 <1 <s. The abstract nogood of a with re;’pect to P, denoted by
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bool pValIllabel(P) {
return pValIllabelA(P,e);

}
bool pvalllabelA((V,> 0, Di,C),0) {

if scope(f) =V then
return C(0);
select v in V' \ scope(6);
forall(l € 1...5s)
Ay := image(0) N Dy;
forall(le€1...5)
if Al 7& Dl then
select f in D;\ A;; A := AiU{f};
forall(d € |J, A»)
0 =0 & v=d;
if —Failure((V,Y_,.. Di,C),0’) then
if pvalllabelA((V,>", ., D;i,C),0') then
return true; -
return false;

Fig. 3. A labelling procedure for piecewise value-interchangeable CSPs

Anogood(c, P), is the set of all functions v : scope(c) — >, Dy satisfying the
condition

Vi€ l...s : allequal(y(v;) | v; € a”1(d})) &
Viel...s:Voj€al(d):v; €D & alldiff (y(vyi), - . ,v(vril))

for1 <l <s.

Figure 3 depicts the labelling procedure pValIlabel for piecewise value-
interchangeable CSPs. It generalizes fValIlabel of Figure 2 by considering the
already assigned values in the sets D;, as well as one new value (if any) from
each set: the procedure fValIlabel is obtained when the partition of D has
only one part (that is, when s = 1). Its correctness proof is similar to the one of
Theorem 5.

Theorem 6. Procedure pValIlabel breaks all the value symmetries of a piece-
wise value-interchangeable CSP with a constant overhead with respect to both
time and space at every node explored.

Experimental results have been reported elsewhere, e.g., for partitioned graph
coloring in [27].
5.3 Piecewise Value-Interchangeable Set-CSPs

We now show that symmetry breaking for piecewise value-interchangeable set-
CSPs is tractable. Given a finite set S, we denote by 2° the set of subsets of
S.
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Definition 22 (Piecewise Set Bijection). Let S = ) . P; be a partitioned
set. A bijection b : 25 — 25 is a piecewise set bijection over 22T if b is
induced by a piecewise bijection over ) . P;.

Definition 23 (Piecewise Value-Interchangeable Set-CSP). A set-CSP
P = (V,22:P1 C) is a piecewise value-interchangeable set-CSP if, for each
solution o € Sol(P) and each piecewise set bijection b over 221 Pt we have
boo € Sol(P).

We actually establish the definitions and results in full detail for fully value-
interchangeable set-CSPs only, but our results generalize to the piecewise case.

Definition 24 (Set Bijection). A bijection b: 2% — 25 is a set bijection over
25 if b(T) = {V/(e:) | e; € T} for T € 25, where V' : S — S is a bijection. We
say that b is induced by b'.

Definition 25 (Fully Value-Interchangeable Set-CSP). A set-CSP P =
(V,2P C) is a fully value-interchangeable set-CSP if, for each solution o €
Sol(P) and each set bijection b over 2P, we have bo o € Sol(P).

To get an impression where such problems can be of interest, consider the
following example.

Example 9. Let V be any set of v elements, called varieties. A balanced incom-
plete block design (BIBD) [7] is a multi-set of b subsets of V, called blocks, each
of size k (constraint C1), such that each pair of distinct varieties occurs together
in exactly A blocks (constraint C3), with 2 < k < v. Implied constraints are
that each variety occurs in the same number of blocks (constraint C3), namely
r=Av—1)/(k—1), as well as that bk = vr and A < r. A BIBD is parameter-
ized by a 5-tuple (v, b, 7, k, \) of parameters, not all of which are independent.
Originally intended for the design of statistical experiments, BIBDs also have
applications in cryptography and elsewhere. Note that the varieties and the
blocks are fully interchangeable. Finding a BIBD means finding a fixed number
of same-size subsets of a fully interchangeable set: either find b subsets of size k
of the set V, or, dually, find v subsets of size r of the set {1,...,b}, subject to
the constraint Cs.

Definition 26 (Closure of a Nogood). Let a be a nogood for a fully in-
terchangeable set-CSP P = (V,2P C). The closure of a for P, denoted by
Closure(a, P), is the set {boa | b is a set bijection over 2P}.

Existential Nogoods and Abstract Nogoods. We now define existential
and abstract nogoods for fully value-interchangeable set-CSPs, first showing the
intuition using Example 9. We take the first mentioned modelling approach
(namely finding v subsets of size r of the set {1,...,b}) and, for simplicity, only
tackle the full interchangeability of the blocks. We will come back to the full
interchangeability of the varieties just after Example 10.
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Consider the (6,10,5,3,2) BIBD (which has one solution modulo all sym-
metries): we want to find v = 6 subsets v; of size r = 5 of the universe
D ={1,...,10(= b)}, each giving the blocks to which variety ¢ of V' belongs,
such that each block is mentioned in £ = 3 subsets and any two subsets have an
intersection of size A = 2. Consider the (consistent) partial assignment:

alvy) =4{1,2,3,4,5} & a(v2) =1{1,2,6,7,8} & a(vs) =1{1,3,6,9,10}

and assume that a becomes a nogood on backtracking. The existential nogood
of a is the set of all partial assignments v satisfying the condition

361, ...,enn €D: alldiﬁ(el, .. .,610) & ’}/(’Ul) = {61,62,63,64,65}
& y(v2) = {e1,e2,¢e6,¢7,e8} & v(v3) = {e1,e3, €6, €9, €10}

This condition can be rewritten as follows:

dey,...,e10 € D : alldiff (e1,...,e10) & (e1 € y(v1) & e1 € y(v2) & e1 € v(v3))
& (e2 €v(v1) & ez €v(v2)) & (e € y(v1) & e3 € y(v3))
& (esev(v1)) & (es €v(v1)) & (e6 € v(v2) & €6 € y(v3))
& (e7 €7(v2)) & (es €7(v2)) & (e9 € ¥(v3)) & (e10 € Y(v3)).

Note that the values 4 and 5 are indistinguishable because they are the only
ones to appear only in the first set. Similarly, the value 6 is not indistinguishable
from any other value because it is the only value that appears only in the second
and third sets. Formally:

Definition 27 (Indistinguishable Values, Cluster). The values x and y
are indistinguishable under a partial assignment 6, which is denoted by x ~ y,
if v € 0(v) — y € 0(v) for all v € scope(f). The clusters of values that always
appear together, and are thus indistinguishable, are the equivalence classes of ~
in D under a.

In our example, there are seven clusters:

{1}, {2}, {3}, {4,5}, {6}, {78}, {9,10}. (1)

The condition of the existential nogood of o can now be rewritten as follows,
using seven existentially quantified cluster variables:

de1y ... er © Dt opartition(D, [c1, ..., ¢q7],[1,1,1,2,1,2,2])
& y(v1))=c1UecaUecsUeq & v(v2) =c;UcaUesUcg & Y(v3) =c1UegUes Uey

where partition(S, P, N') holds if the elements P; of the set list P are non-empty,
mutually disjoint, union up to the set S, and have N; elements respectively,
with the NV; being the elements of the integer list V. Note that the cluster size
conditions are necessary in general, but actually implied in this example.® If
there had been values of D that do not appear in any of the set values for the
variables in the scope of «, then they would have formed a cluster by themselves.

5 Consider a domain of five elements and a partial assignment for two set variables,
S1 and Sq, of size 3 that have one or two elements in common, that is S1 = e1 U ea
and Sz = e; U ez where e, ez, e3 are disjoint. Then e; can be of size 1 or 2.
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Definition 28 (Signature of a Cluster). The signature of a cluster ¢ relative
to a partial assignment 0, denoted by sig(c,0), is the list of indices i of the
variables v;, which are given a set value by 0, of which ¢ is a subset: sig(c,d) =
{i | v; € scope(0) & ¢ C H(v;)}.

For instance, sig({3}, @) = [1,3] because {3} is a subset of both a(v;) and
a(vs). The signatures of the seven clusters in (1) relative to « respectively are:

[1,2,3], [1,2], [1,3], [1], [2,3], [2], [3]- (2)

Eliminating the existentially quantified variables, using the indices in the sig-
natures of the clusters as a reference for what to include and what to exclude,
leads to the following condition for the abstract nogood of a:

partition(D, [(y(v1) Ny (v2) Ny (vs)), (v(vr) Ny (v2)) \ v(vs),
(v(v1) N y(vs)) \ v(va), y(v1) \ (v(v2) Ur(vs)), (v(v2) Ny(vs)) \ v(v1),
Y(w2) \ (v(01) U (vs)), v(vs) \ (v(v1) U (v2))], [1,1,1,2,1,2,2])

where the order of the clusters is the same as in (1). If there had been values of
D that do not appear in any of the set values for the variables in the scope of
a, then their cluster, which would have the empty list as signature, would have
been equal to D \ (vy(v1) U~(v2) U~x(vs)), as D is the intersection of an empty
collection of sets drawn from D.

We now show that the closure of a nogood for a fully value-interchangeable
set-CSP can be characterized compactly and that membership to the closure
of a nogood can be tested in polynomial time in this case. We first define the
concept of existential nogood.

)

3
\
2

Definition 29 (Existential Nogood). Let « be a nogood for a fully value-
interchangeable set-CSP P = (V, 2b. C). Letcy,. .., cm be the equivalence classes
of ~ in the universe D under a, and let ny,...,n,, be their respective sizes. Let
I be the set of indices of the variables of V' that are in scope(a). Let J; be the
set of indices of the clusters that are in a(v;). The existential nogood of « for
P, denoted by Enogood(c,P), is the set of all functions v : scope(a) — 2P
satisfying the condition

ey, ..oy em € D s opartition(D, 1, - .. Cmly [R1y -2y 1m])

& /\z‘el ('V(Ui) = UjeJi Cj

The following lemma indicates that an existential nogood precisely captures
the closure of its nogood:

Lemma 8. Let o be a nogood for a fully value-interchangeable set-CSP P:
Enogood(ca, P) = Closure(a, P).

Proof. We first show that Closure(a, P) C Enogood(c,P). Let v be a member
of Closure(a, P). By the definition of closure, there exists a set bijection b such
that v = boa. Thus, since « satisfies Fnogood(a, P), there exists a set ¢1,. .., Cm
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of equivalence classes of ~ in the universe D under « that satisfies the existential
formula. Then the set bijection b takes ¢y, ..., ¢y, to b(er), ..., b(¢m), which are
the witnesses for v to satisfy Enogood(«,P). Hence v € Enogood(a, P).

We now show that Enogood(c, P) C Closure(a, P). Let 6 € Enogood(a, P).
The equivalence classes of ~ in D under ¢ will be ¢y,..., ¢y, which are the
witnesses for § to satisfy Enogood(a,P). Further suppose that the equivalence

classes of ~ in D under « are ¢f,...,c,, . Because the sizes of each of ¢; and ¢

ym:*

are equal and both the ¢; and the ¢ partition D, there exists a set bijection b on
2D taking ¢; to c}. Hence § can be rewritten as bo a and § € Closure(a, P). O

It is not obvious that membership to an existential nogood can be tested
efficiently since it involves an existential quantification. However, due to the
nature of the underlying conditions, it is possible to eliminate the existential
variables and obtain an abstract nogood, as defined next:

Definition 30 (Abstract Nogood). Let a be a nogood for a fully value-
interchangeable set-CSP P = (V,2P C). Let I be the set of indices of the vari-
ables of V' that are in scope(a). Let E be the list of equivalence classes of ~
in the universe D under «, and let N be the list of their respective sizes. The
abstract nogood of a with respect to P, denoted by Anogood(«, P), is the set of
all functions ~y : scope(a) — 2P satisfying the condition

partition (D, [ﬂjeSig(&a) y(v;) \ UjeI\sig(&a) v(vj) | e€ E} ,N) .

The following lemma indicates that an abstract nogood precisely captures its
existential nogood:

Lemma 9. Let o be a nogood for a fully value-interchangeable set-CSP P:
Enogood (o, P) = Anogood(a, P).

Proof. This follows from the definition of the abstract nogood and the fact that

the expression
N )\ U )

jesig(e,a) jel\sig(e,a)

captures exactly each ¢; in the existential nogood. a

Maintaining Nogoods and Simplification. Let us now consider depth-first
search, for instance, and see what happens when the assignment to vs is undone,
making « a nogood. By the definition of clusters, the search procedure should
treat the elements of a cluster as indistinguishable. Then, imposing an ordering
on the elements of each cluster, the idea is to select the it" element of a cluster
only when the (i — 1) element of that cluster has already been selected as a
member for the next subset variable.

Figure 4 depicts the labelling procedure fValIsetLabel for fully value-
interchangeable set-CSPs. It uses a function Failure'(P,0,v,S), which returns
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bool fValIsetLabel((V,27,C)) {
return fVallsetLabelA((V,2”,C),¢,[D]);
}

bool fVallsetLabelA((V,2”,C),0,E) {
if scope(f) =V then
return C(0);
select v in V' \ scope(6);
(b,S) := fVallsetLabelB((V,2”,C),0,v,0,E);
if b = true then
0 =0 & v=_8;
E' := UPDATE(E,S);
return fVallsetLabelA((V,2°,C),0,E");
return false;

}
(bool, set) fVallsetLabelB((V,2”,C),0,v,5,[e1,ez,...,em]) {
if |S| =n then
return (true,S);
S := SU{head(e1)};
if —Failure’ ((V,27,C),0,v,5') then
(b,S"”) := fVallsetLabelB((V,2” C),0,v,5,[tail(e1), ez2,...,em]);
if b = true then
return (true,S”);
(b,S"”) := fValIsetLabelB((V,2” C),0,v,S,[e2,...,em]);
if b = true then
return (true,S”);
return false;

Fig. 4. A labelling procedure for fully value-interchangeable set-CSPs

false if at least one extension of the partial assignment 6§ & v = SUT for some
T C D is a solution to P = (V, 2P C). In other words, it satisfies the property

Failure' ((V,2P . C),0,v,5) =
VI CD:|SUT|=n.V8€ Comp(d & v=SUT, (V,2P C)).-C(B).

Procedure fValIsetLabel also uses a procedure UPDATE(FE,.S), which returns
the equivalence classes (clusters) of T'U S, with those of T" being E.

Definition 31 (Compact Set-Variable Decomposition Tree). A compact
set-variable decomposition tree for a fully value-interchangeable set-CSP P =
(V,2P C) is a search tree where nodes represents partial assignments for Pand
nodes are decomposed as follows: given a node representing a partial assignment
a, where scope(a) = {v;,...,v;, } and E is the set of equivalence classes of
~ in the universe D under «, its child nodes represent the partial assignment
a; =a & (v, = 5;) where the following two conditions hold:

V(i,j):VeGE:|Siﬂe|:\5jﬂe\$5iﬂe:5jﬁe
and

V(i,j):Ye€e E:|S;Ne| <|S;Ne|l=S,NeC S;Ne
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The first condition says that if any two sets have the same number of elements
from the the same equivalence class then they have the same elements, while
the second condition together with the first condition forces the elements of each
equivalence class to be picked in a certain order.

Compact set-variable decomposition trees are complete:

Lemma 10. Let S be the set of assignments in a compact set-variable decompo-
sition tree for a fully value-interchangeable set-CSP P = (V,2P C). The closure
{boa|a €S andb is a set bijection over 2P} is equal to Sol(P).

Proof. This follows directly from the examination above of the nogoods and the
fact that for any node representing a partial assignment « and any deeper node
representing the partial assignment o/, the set E’ of equivalence classes of ~ in
the universe D under o' is a refinement of the set E of equivalence classes of ~
in D under a. a

A compact set-variable decomposition tree never extends any nogood gener-
ated during search.

Lemma 11. Let T be a compact set variable decomposition tree for a fully value-
interchangeable set-CSP P = (V,2P,C). The partial assignment of a node T
never extends any nogood generated during the exploration of T (except the one
is possibly generates).

Proof. The main structure of the proof of this lemma is similar to the one of
Lemma 7. Given a partial assignment 6, we have to show that # does not belong
to the closure of some a which is a partial assignment at a lower depth. It
suffices to restrict 6 to 6, which is 6 restricted to scope(a) (that is scope(0') =
scope(a) and for Yv € scope(theta’) : 6'(v) = 6(v)). It suffices to show that
0" & Closure(c,P). Observe that there exists a partial assignment o’ such that
0=a & (v=251)and a =& & (v =52). By the definition of a compact
set-variable decomposition tree, the sets Ej and E, of equivalence classes of ~
in the universe D under 6 and « will be different and neither will be a refinement
of the other, hence 6’ cannot be in Closure(a, P). O

Theorem 7. Procedure fVallsetLabel breaks all the value symmetries of a
fully value-interchangeable set-CSP with a constant overhead with respect to both
time and space at every node explored.

Proof. This result follows from Lemmas 10 and 11. a

Procedure fValIsetLabel performs what is called canonical labelling in [10].
There, it is also shown that canonically labelling along one dimension of a matrix
of variables amounts to lexicographically ordering (a flattening of) the other
dimensions of that matrix. Experimental results have been reported elsewhere,
e.g., in [10].

Theorem 7 generalizes to piecewise value-interchangeable set-CSPs:
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Theorem 8. All the value symmetries of a piecewise value-interchangeable set-
CSP can be broken with a constant overhead with respect to both time and space
at every node explored.

Ezample 10. Reconsider (v, b, r, k, \) BIBDs. Rather than having v set variables
of size r, such that their pairwise intersections are of size A and every block
is mentioned k times, one can also have a v X b matrix of zero/one variables,
such that there are r ones per row, k ones per column, and scalar products of
A for every pair of distinct rows. The lex_chain global constraint [5] of SICStus
Prolog 3.10.0, if deployed to lexicographically order the rows of that matrix,
breaks the same symmetries as our labelling procedure for the set variables.
Unfortunately, that global constraint is very efficient because it is able also to
filter the domains while our labelling cannot do the same filtering [18].

Let us now return to the full interchangeability of the v varieties. Breaking
these extra v! symmetries at the same time is hard, as they compose with the
b! block symmetries into v! - b! symmetries. Lexicographically ordering both the
rows and the columns of the mentioned v x b matrix of zero/one variables does
not break all these symmetries, but gives reasonable performance due to the
constraint Co [11]. This leads to the issue whether a suitable abstract nogood
can be formulated and a tractable labelling procedure be derived. In this case,
it is not sufficient to store only the nogoods at the frontier nodes in the search
tree; nogoods have to be stored from higher up in the search tree, as in SBDS
[15] and SBDD [9]. Further, testing if a partial assignment extends a nogood
is NP-complete. To see this, consider a BIBD where the blocks are of size 2; a
nogood can then be thought of as a graph, each block specifying an edge. Then
testing if a partial assignment is in the closure of the nogood is equivalent to
subgraph isomorphism, which is NP-complete. A formal proof of this result will
be given in the next section.

6 Limits of Efficient Symmetry Breaking

Until now, we have dealt with cases where symmetry could be broken efficiently.
Particularly, we have shown how piecewise variable and value symmetries can
be broken efficiently, and given extremely low-overhead algorithms for breaking
value symmetry only. Unfortunately, as we will see in this section, there are
limits to efficient symmetry breaking. We consider set-CSPs with interchangeable
variables and values:

Definition 32 (Piecewise Interchangeable Set-CSP). A set-CSPP = (3", Vi, 221 D1 C)
is a piecewise interchangeable set-CSP if, for each solution o € Sol(P), each

piecewise bijection a over Y, Vi, and each piecewise set bijection b over 22 D

we have bo g oa € Sol(P).

When trying to break the symmetry in piecewise interchangeable set-CSPs
by means of SBDD, we need to solve the following dominance detection problem
efficiently.
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Definition 33 (Dominating a Set Assignment). Let P = (3, V4, 2271 O)
be a piecewise interchangeable set-CSP. Set assignment o dominates set assign-
ment (3 if and only if there exist a piecewise bijection a over ), Vi and a
piecewise set bijection b over 221 Pt such that for every v € scope(a) we have

Bla(v)) = bla(v)).

We will show that solving this problem is NP-hard, thus proving that SBDD
is not able to break piecewise symmetry in set-CSPs efficiently. More precisely, we
reduce the corresponding dominance detection problem to subgraph-isomorphism.
To achieve the desired reduction, we construct a set assignment from a graph in
the following way:

Definition 34 (Set Assignment ag). Given an undirected graph G = (V, E)
with ¢ := |V, we create a set of interchangeable values N := {ny,...,n.} and a
set of interchangeable variables V := {p;; | {i,j} € E}. Then, the set assignment

ag is defined as ag == Ny; jyep(pij = {ni,n;}).

Theorem 9. Given two undirected graphs G1 = (V, E1) and Go = (V, Es), we
have that Gy is sub-isomorphic to Gy if and only if ag, dominates ag, when all
variables and values are considered to be interchangeable.

Proof. We start by showing that aq, dominates o, if G; is sub-isomorphic to
Gs. Let 0 : V. — V be bijective such that {i,j} € F; implies {o(i),0(7)} €
E,. Then, for all p;; € scope(ag,) with ag,(pij) = {ni,n;} we have that
g, (Po(i),o()) = {Me(i)s No(j) }- Therefore, ag, dominates ag,.

Now, let us assume that aq, dominates ag,. Then, there exist functions
a:FEy — Eyand b:V — V such that for all p;; € scope(ag,) with ag, (pij) =
{ni,n;} we have that aa, (Pa{i,j3)) = {7(i); 7w (5) }- By construction of ag,, this
is equivalent to {ny@;, ny;)} € E for all {i,j} € E. Thus, b is a sub-isomorphism
between G and Gs. a

With Theorem 9, it is possible to prove the following corollary:

Corollary 1. The dominance detection problem for piecewise interchangeable

set-CSPs is NP-hard.

Proof. We reduce the problem to subgraph-isomorphism. In order to apply The-
orem 9, we need to ensure that both graphs operate over the same set of nodes.
When the sets of nodes of the given graphs differ, it is possible to see that G
cannot be sub-isomorphic to G5 if (G; contains more nodes than G5. When Gy
actually contains fewer nodes than Gs, it is possible to see that we can add iso-
lated nodes to G; without affecting subgraph-isomorphism. Then, we have that
both graphs contain the same number of nodes, and, by relabeling the nodes
in both graphs, we may assume that both graphs operate on the same set of
nodes. O

Note that, despite this negative result, in some important special cases the
dominance detection problem for piecewise interchangeable set-CSPs is still
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tractable. For example, when the set variables cannot take overlapping sets as
values, the algorithm developed in Section 3 can be adapted (by exchanging the
roles of values and variables) to break all the symmetries efficiently. Hence the
following corollary of Theorem 1:

Corollary 2. The dominance detection problem for piecewise interchangeable
set-CSPs is tractable for non-overlapping sets.

Note that the dominance detection problem as we consider it here regards
arbitrary partial assignments. This implies that, when the detection problem is
tractable, we can break symmetries efficiently. However, the situation changes
when we achieve an intractability result like the previous one.

Within methods like SBDD, the partial assignments that need to be com-
pared can only differ in a rather specific fashion. We can also show that these
more specific dominance detection problems are NP-hard as well, therefore prov-
ing that SBDD in its general form is incapable of breaking symmetries in piece-
wise interchangeable set-CSPs efficiently. The specific dominance detection prob-
lems that SBDD considers differ from the general dominance detection problem
by the fact that the partial assignments o and (§ that are compared are not
arbitrary. We know that there exists exactly one assignment v = d such that
a=v & (v=d),whilep =+ & 6, and v € Dom(d) for some partial
assignments v and 4.

We prove that dominance detection even for this limited problem is still NP-
hard by using the same idea as before, but this time we only consider complete
subgraphs, i.e., we reduce to the clique problem rather than to arbitrary sub-
graph isomorphism. Given a graph G and a value k, the first assignment is based
on a complete graph of size k and it is defined in accordance with Definition 34.
The second assignment is based on G with an additional, disconnected compo-
nent that is a complete graph of size k with just one edge missing. With this
setting, the first and second assignments have the same structural relationship
as assignments that need to be compared within SBDD. Moreover, the given
graph contains a clique of size k if and only if the first assignment dominates
the second. Consequently, for piecewise interchangeable set-CSPs, SBDD is not
capable of breaking symmetries efficiently.

As a final note on this negative result, we would like to stress that this does
not imply that symmetry breaking is NP-hard in general since we do not consider
other methods here like remodeling or the adaptation of the branching scheme.

7 Generalizations: Wreath Value-Interchangeability

So far, we have focussed on piecewise symmetry only. In this section, we gener-
alize some of our tractability results to the more complex class of CSPs where
each variable is assigned a pair of values (di,ds) from a domain D; x Dy. All
values in D; are interchangeable and, for a fixed value in D;, all values in
D5 are interchangeable as well. These problems are here called wreath value-
interchangeable CSPs, because the symmetry group corresponds to a wreath
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product of groups [4]. Such problems arise naturally in a variety of applications,
e.g., in resource allocation and scheduling.

Ezample 11. Consider the problem of scheduling a meeting where different groups
must meet some day of the week in some room, subject to constraints. The days
are fully interchangeable and, on a given day, the rooms are fully interchangeable.

7.1 Wreath Value-Interchangeable CSPs

We now formally define this class of CSPs. Our definitions and results only
consider two sets of fully interchangeable values, for simplicity. They can be
generalized to an arbitrary fized number of sets, and to sets of piecewise inter-
changeable values.

Definition 35 (Wreath Bijection). Let S = S; x S2 be a Cartesian prod-
uct. A bijection b : S — S is a wreath bijection over Sy x Sy if b((e1,e2)) =
(b1(e1), b5 (e2)), where by : S1 — Sy is a bijection and each b3 : Sy — So (for
e1 € S1) is a bijection.

Definition 36 (Wreath Value-Interchangeable CSP). A CSPP = (V, Dy x
D5, C) is a wreath value-interchangeable CSP if, for each solution o € Sol(P)
and each wreath bijection b over D1 X Ds, we have bo o € Sol(P).

Thus, in a wreath value-interchangeable CSP, a value in the domain Dy x Dy
is assigned to each variable, where the values in D; are fully interchangeable,
and, for a fixed value in D1, the values in Dy are fully interchangeable as well.

We now devise a highly efficient symmetry breaking algorithm for wreath
value-interchangeable CSPs.

We use the following notations. If d = (dy,ds) is a pair, then d[1] = d; and
d[2] = do. If T is a set of tuples, then T'[i] denotes the set {d[i] | d € T} and
filter(T,i,d;) denotes the set {d | d €T & d[i] =d;}. lf a: Dy x Dy — D1 X Dy
is an assignment, then a~!(dy, D) denotes the set {a~1(dy,d2) | d2 € Dy}

Definition 37 (Closure of a Nogood). Let « be a nogood for a wreath value-
interchangeable CSP P = (V, Dy x Dy, C). The closure of o for P, denoted by
Closure(a, P), is the set {boa | b is a wreath bijection over D1 x Ds}.

We now define the relevant abstract nogoods.

Definition 38 (Abstract Nogood). Let o be a nogood for a wreath value-
interchangeable CSP P = (V, Dy x Do, C). Let image(a)[1] = {dy,...,dx}, let
filter (image (), 1,d;) = {di,...,d; }, let v,, € a=(d;, D3), for 1 <i <k, and
let Upi € a!(d;,d;), for 1 < i <k and 1 < j < l;. The abstract nogood
of a with respect to P, denoted by Anogood(c,P), is the set of all functions

31



bool wValIlabel(P) {
return wValIlabelA(P,¢);
}

bool wValIlabelA((V,D: x D2,C),0) {
if scope(f) =V then
return C(0);
select v in V' \ scope(0);
A1 := image(0)[1];
if Al 75 D1 then
select f in D1\ A1; Ay := AtU{f};
forall(d, € A1)
As = filter(image(a),1,d1)[2];
lf A2 # D2 then
select f in DQ\AQ; AQ = AQU{f};
forall(dz € A2)
0" =0 & v=(d1,d2);
if —Failure({V, D1 x D2,C),0") then
if wValllabelA({V, Dy x D2,C),6) then
return true;
return false;

Fig. 5. A labelling procedure for wreath value-interchangeable CSPs

v : scope(a) — Dy x Doy satisfying the condition

Viel...k: allequal(v(v;)[1] | v; € a™(d;, D2)) &
ldiff (+(vr, )1, . 7 (0, ) [1]) &

Vi€ l...ly : allequal(y(v;)[2] | v; € a7 (dy,d})) &
alldiff (v(v,. )[1}7 - (U”ll)[l]) &

VZE L. 1y« allequal(y(vj)[2] | v; € a™1(dy,dY)) &
altdff (30, )1 g 1)

Figure 5 depicts the labelling procedure wValIlabel for wreath value-interchangeable
CSPs. Its correctness proof is similar to the one of Theorem 5.

Theorem 10. Procedure wValIlabel breaks all the value symmetries of a wreath
value-interchangeable CSP with a constant overhead with respect to both time and
space at every node explored.

7.2 'Wreath Value-Interchangeable Set-CSPs

We now show that symmetry breaking for wreath value-interchangeable set-
CSPs is also tractable.

Definition 39 (Wreath Set Bijection). Let S = Sy x Sy be a Cartesian
product. A bijection b : 25 — 29 is a wreath set bijection over 251%52 if b is
induced by a wreath bijection over Sy X Ss.
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Definition 40 (Wreath Value-Interchangeable Set-CSP). A4 set-CSPP =
(V,2P1xDP2 () 4s a wreath value-interchangeable set-CSP if, for each solution
o € Sol(P) and each wreath set bijection b over 2P1*P2 we have boo € Sol(P).

Consider the following example.

Ezample 12. Take the set V = {v1,v2} of set variables over the universe D; X
D, with Dy = {di,d2} and Dy = {ej,eqs,e3}, such that the set-CSP P =
(V,2P1xD2 (0 is wreath value-interchangeable, the constraint set C' being arbi-
trary. Suppose that we have already tried the partial assignment

a1 = (v1 = {(d1, 1), (d1, e2), (da, €2), (da, e3)} & va = {(da,e1), (da, e2)})

and that now we are about to investigate the partial assignment

Qo = (Ul = {(d1761)7 (d1762)7 (d2761)7 (d2762)} & vy = {(d1762)7 (d1763)})'

How can we decide whether as is a symmetric variant of a; or not? One way to do
that is to construct a permutation of D, as well as corresponding permutations
of Do, so that the sets in as are transformed into those of a;.

In order to construct a permutation o of Dy, let us assess whether d; can
be mapped to itself. If o(d1) = dy, then vo = {(d1,e2),(d1,e3)} in as cannot
be mapped to va = {(dz2,e1),(d2,e2)} in a;, no matter how we permute Ds.
Algorithmically, we can infer this by checking whether the number of tuples
starting with dy in ap is the same as the number of tuples starting with o(d;) in
o for all assigned set variables. For vy, the important tuples in aq are (dy,eq)
and (dq,ez). That means that there are two such tuples, which matches the
number of respective tuples for v; in aq, namely (di,e1) and (dy, e2). For vq, the
respective tuples in ay are (dq,es) and (dy,e3), i.e., there are two such tuples.
In a1, on the other hand, there are no tuples starting with o(d;) = d; at all,
which shows that d; cannot be mapped to itself.

Now let us investigate whether d; can be mapped to dy. First, we check
whether the numbers of tuples match. For v; we have two tuples starting with
dy in a9, and in a1 we have two tuples starting with do. Moreover, for v we
have two tuples starting with d; in as, and also two tuples starting with ds in
aq. Therefore, the initial check on setting o(dy) = ds is inconclusive. To check
fully whether we can construct a permutation o of Dy with o(d;) = da, we need
to find out whether there exists a permutation of Dy such that the respective
tuple sets map exactly, and not just in number. That is, we need to construct a
permutation 7 of Dy such that, with o(d;) = da, we have

{(o(dr), (1)), (o(d1), 7(€2))} = {(d2, €2), (d2,e3)} (3)
and
{(0(d1)77(62))7 (0(d1)77(63))} = {(d27 61)7 (d27 62)}7 (4)

or we need to show that no such permutation exists. The equations above pose
the following constraints on the permutation 7 that we are trying to construct:
T(e1) € {ea,e3}, T(e2) € {ea,e3} N{e1,ea}, and 7(e3) € {e1,ea}.
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Fig. 6. Part (a) gives the bipartite graph constructed to assess whether di can be
mapped to da. Part (b) shows the bipartite graph constructed to find a feasible per-
mutation of Dy or to show that none exists.

Fortunately, constructing 7 or proving that no such permutation exists can
be done by solving a maximum matching problem in a bipartite graph. The node
set N is defined as the union of the sets Ny := {e1, e2,e3} and Na := {e], €5, €4},
where the e} are copies of the e;. We define the edge set E in accordance with
the constraints as given before, i.e., we add an edge (ei,e;) € N; x Ny to B
if and only if 7(e;) = e; is allowed. Then, a perfect matching in G = (N, E)
exists if and only if there exists a permutation 7 that satisfies equations (3)
and (4). As we can see in Figure 6(a), a maximum matching, and consequently
a permutation 7, exists that shows that we can potentially set o(d1) = ds.

We continue to check whether setting o(ds) = dy and o(dz) = d3 are possible.
We find that for both these mappings we can construct a corresponding legal
permutation 7 of Ds.

Now, equipped with that knowledge, we can try at last to construct o where
we must ensure that o(d;) € {d2} and o(d2) € {d1, d2}. Following the same idea
as before, we check whether such a permutation exists by solving a maximum
matching problem in a bipartite graph: see Figure 6(b). Since a perfect matching
exists, we have a proof that indeed assignment as is symmetric to a;. On the
other hand, the construction of ¢ could only have failed if no permutation of D,
and corresponding permutations of Dy existed.

Generally, we state:

Theorem 11. All the value symmetries of a wreath value-interchangeable set-
CSP can be broken with a polynomial time overhead at every node explored.

Proof. As in all pure cases of value symmetry, we only need to check search
nodes against their previously expanded siblings. We show how this dominance
check can be performed by abstracting from the concrete example above. For all
potential mappings o(d) = e, and for all set variables v; that were assigned values
in ay, we first check whether the number of tuples in the set o4 (v;) starting with
e matches the number of tuples in the set aq(v;) starting with d. If that is not
the case, we note that setting o(d) = e is not feasible. Otherwise, we set up
a bipartite graph Ggq. = (Ny.e, Eq,e) where Ng . consists of all possible second
tuple entries f and their copies f’. An edge (f,¢’) is an element of Eq . if and only
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if, for all set variables v; that were assigned values in aq, either (d, f) ¢ as(v;)
or (d,f) € az(v;) & (e,9) € a1(v;). We note o(d) = e as feasible if and only
if there exists a perfect matching in G4 .. Finally, we set up a bipartite graph
G = (N, E) where N counsists of all possible first tuple entries d and their copies
d'. An edge (d,€’) is an element of F if and only if o(d) = e is feasible. Then,
we report as as dominated by «; if and only if there exists a perfect matching
in G.

This method either constructs permutations that prove the dominance of
a1 or shows that no such permutation exists. When p denotes the number of
possible first tuple entries and ¢ the number of possible second tuple entries, our
algorithm can be implemented to run in O(p?¢*®) time. a

Note that the dominance checker that we outlined in the proof above can be
generalized for tuples with k entries. However, the run-time is then exponential
in k. We leave open whether an efficient labelling algorithm can be formulated
to break this type of value symmetry. The point here was to show that wreath
value symmetry allows tractable symmetry breaking for set-CSPs.

8 Conclusion

We have theoretically studied several classes of CSPs for which symmetry break-
ing is tractable. These CSP classes, which encompass many practical problems,
feature various forms of value or variable interchangeability and allow symme-
try breaking to be performed with a polynomial (that is often even a constant)
overhead with respect to both time and space at every node explored, using ded-
icated search procedures. Unfortunately, efficient symmetry breaking by such
dominance-detection schemes has its limits, as we have identified some CSP
classes where dominance detection is intractable.

Table 1 summarizes our main results, where “P (Thm ¢)” means that breaking
all the symmetries mentioned in the corresponding row is feasible with a poly-
nomial overhead with respect to both time and space at every node explored for
the corresponding (set-) CSP in the column, as proved in Theorem 4. Some of
these positive tractability results, namely the ones marked “P (from Thm 4)”,
are trivially derivable as consequences from Theorem i. However, no specialized
labeling procedures are given for these particular CSP classes in this paper. The
negative tractability results, marked “NP-hard (Cor. 7)” and referring to Corol-
lary ¢, only concern dominance-detection schemes like SBDD; it remains an open
research issue whether other schemes can break those symmetries in polynomial
time.

In [21] it is proved that all value symmetries of a CSP are polynomial-time
tractable; this is proved using group theoretic notions and although the resulting
complexities are the order of a low-degree polynomial they are in general not as
efficient as the specialized algorithms presented in this paper. A key component
in the proofs is the notion of a minimal GE-tree, which is essentially the search
tree that results from a search procedure that breaks all symmetry. Compact
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lSymmetry H CSPs | Set-CSPs

fully value-interchangeable P (Thm 5)|P (Thm 7)
fully variable-interchangeable P (from Thm 1)|P (from Thm 1)
fully value- and variable-interchangeable P (from Thm 1)|NP-hard (Cor. 1)
piecewise value-interchangeable P (Thm 6)|P (Thm 8)
piecewise variable-interchangeable P (from Thm 1)|P (from Thm 1)
piecewise value- and variable-interchangeable||P (Thm 1)|NP-hard (Cor. 1)
wreath value-interchangeable P (Thm 10)|P (Thm 11)

Table 1. Tractability of symmetry breaking and dominance detection

(set-)variable decomposition trees (see Definitions 18 and 31) are GE-trees; in
fact all the search procedures in this paper produce GE-trees.

There are many directions for future research. Of particular interest is the
study of tractable classes of CSPs exhibiting variable symmetries where the vari-
able set has a more complex structure than the partitions studied in this paper.
In particular, when the variable set is obtained by a Cartesian product over some
index sets, we get what is known as a matrixz model. There are many interesting
forms of interchangeability in matrix models, such as the full/piecewise/wreath
interchangeability of matrix slices (rows, columns, ...) [11]. For many of these
forms of variable interchangeability, including their compositions with various
forms of value interchangeability, tractability results for symmetry breaking are
still missing and finding effective search procedures is a challenging problem.
Also, as Corollary 2 has shown, negative tractability results call for the identifi-
cation of special cases where symmetry breaking is tractable.
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