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Abstract

This text describes the COS method and its implementation for the
BENCHOP-project.

1 Fourier cosine expansion formula (COS for-
mula)

We explain the COS method to approximate the European option value
u(z,tg) = e "AE [u(Xr, T)| Xy = ], (1)

with At = T — tg. Here X, is the state process, which can be any monotone
function of the underlying asset price S, for example, the scaled log-asset price,
X; = In(S;/K), where K is the options strike price. We assume a continuous
transitional density, which is denoted by p(y|z). In other words, [, p(y|z)dy =
P(Xr € B|X:, = z), V Borel subsets B € R. We omit the dependence on At
for notational convenience. We rewrite

u( o) = 72 / u(y, T)p(ylz)dy. 2)

The numerical method is based on Fourier cosine series expansions of the option
value at time level T" and the density function, as we will show below. The
resulting equation is called the COS formula, due to the use of Fourier cosine
series expansions. In the derivation of the COS formula, we distinguish three
different approximation steps.

Step 1: For the problems we work on, the integrand decays to zero as y —
+o00. Because of that, we can truncate the infinite integration range of the
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expectation to some interval [a,b] C R without losing significant accuracy. This
gives the approximation

b
wn (2, to: [0, B]) = e~ / u(y, T)p(y|z)dy. 3)

Step 2: Next, we consider the Fourier cosine series expansions of the density
function and the option value (at time T') on [a, b]:

p(ylx) = i Pr(x cos( = Z), (4)
k=0

and u(y,T Z Ui (T) cos ( a) , (5)

with series coefficients {Py}32, and {U}72, given by

Pilx) = 32 / ’plyle) cos (kri=2) dy (6)

b
and U, (T) = ﬁ/ u(y, T) cos (knr%ii) dy, (7)

respectively. 3"in (1) indicates that the first term in the summation is weighted
by one-half. Replacing the density function by its Fourier cosine series, inter-
changing summation and integration, using the definition of coefficients Uy, and
truncating the series summation, we obtain the next approximation

us(z, to3 [a, b, N) = 25273 S Py (@)U (T). (8)

k=0

Step 3: The coefficients Py (x) can now be approximated as follows

—/ (ylx) cos lmr )dy
= m%{w (bk”a x) e i a} = Bu(a). ©)

${.} denotes taking the real part of the input argument. ¢(.|z) is the condi-
tional characteristic function of Xr, given X;, = x. The density function of
a stochastic process is usually not known, but often its characteristic function
is known (see [FOO08]). For Lévy processes the characteristic function can be
represented by the Lévy-Khintchine formula and there holds

Pr(x)

22

@(W|$) = @(Wlo)eiwz = ¢levy(w)eiw$' (10)



Inserting the above equations into (8) gives us the COS formula for approxima-
tion of u(x,tg):

N—1
/

(xz,to) := ug(z,to; [a,b], N) = %e”m Z Dy () Ui (T)
k=0

N-1
= e_TAt Z/%{(blevy (bk%a) eikﬂi_s}uk(T)' (11)
k=0

Since the terms Uy, (T') are independent of x, we can calculate the option value
for many values of  simultaneously.

1.1 Fourier cosine coefficients call and put payoff function

We switch to the scaled log-asset price process, X; := In(S;/K). The payoff
functions of call and put options then read:

g(y) =K(e’ —=1)" and g(y) = K(1—e)", (12)
respectively, where (z)* := max(z,0) and K denotes the strike price. The
Fourier cosine coefficients of the option value at time T', (we use u(y,T) = g(y))

b
(1) = 25 [ alw)cos (k=2 do (13)

are known analytically:

u}ga”(T) = %K (Xk? (07 b, a, b) - ql}k: (07 ba a, b)) ’

ulzcmt(T) = %K (’l/)k(av Oa a, b) - Xk(aa Oaav b)) ) (a <0< b) (14)

The functions xx and vy are given by:

zZ2
Xk (21, 22,a,b) = / e¥ cos (kwgis) dy

Z1

2z
and (21, 29,a,b) :/ cos (kwg:Z) dy (15)

21

and admit the following analytic solutions

_ 1 Zo—a z zZ1—a z
Xk(z1, 22,a,b) = m {cos (k7r - ) e** — cos (lmr - ) e

—a

+ g sin (kﬂ Z;_‘;) e — M sin (Wg_—;) e} (16)
] zZ2—a oo zZ1—a b—ia
,(/}k(zl7 22, a,b) = |:Sln (kﬂ- b—a ) Si <k7T b—a )i| km for k 7é 0, (17)
Z2 — 21, for k = 0.



2 Method parameters

The authors of [FOO08] provide the following rule-of-thumb for the computational
domain for European options

[a,b] = {61 —L\&+ Ve, G+ D&+ \/34] . Lel6,10], (18)

where &1, &9, . .. are the cumulants of the underlying stochastic process. For the
cumulants of the Merton jump diffusion model and Heston model, we refer to
[FOO08].

For some problems we further optimized the width of interval [a,b], such
that a lower number of Fourier cosine coefficients, i.e. N, is needed to obtain
the required accuracy. In Table 1 our choices for the computational domain are
presented, which is either prescribed by a value L or the interval itself. Also the
number of Fourier coefficients is reported.

Table 1: Method parameters [a,b] and N.

Problem 1 (standard) u A r %
la, b] L =8 L=38 L=28 L =38
N 19 20 23 23
Problem 1 (standard) American Up-and-out
[a, 5] [n (%), (4] [n (%), In (4]
N 26 27
Problem 1 (challenging) U A r %
[a, b] [n (%) ()] [n(R) ()] [(R) (3R] [n(R), ()]
N 234 251 298 298
Problem 1 (challenging) American Up-and-out
[a, 3] [n (%), In ()] [In (), In (5F5)]
N 210 187
Problem 2 European 2 American 3 smooth
la, b] L=28 L=8 [50, 360]
N 20 137 2°
Problem 4 5 6
la, b] L =8 L=6 L=28
N 28 70 19

3 The Black-Scholes-Merton model for one un-
derlying asset

The asset price is modeled by a geometric Brownian motion

dSt = TStdt + O'Stth.

(19)



We switch to the scaled log-asset price process, X; := In(S;/K). We then deal
with the Brownian motion

dX, = (r — 30?)dt + ocdW,. (20)
The corresponding characteristic function reads

Drevy(w) = exp (iw(r — 20?)At — w0 At) . (21)

3.1 European option and Greeks

The COS formula to approximate the European options is given by equation
(11). The Greeks can then be approximated by the following formulas:

N-1
(ot =77 3 oy (1) 75 b4, (22)

Z

iy e E=a A
ai;ﬂ(xvtO) = 67TAt Z R {¢levy (bk_ia) € g b—a (% - (m)Q)}uk( )%
k=0
(23)
N-1 Y

i) = 8 S Lo (45) 75 (i o o). 1)

3.2 Bermudan and American put

A Bermudan-style option can be exercised at a fixed set of M early-exercise
dates prior to the expiration time T, to < t1 < ...ty < ... < tpy = T,
with timestep At := t,,41 — t;n. The authors in [FO09] developed a recursive
algorithm, based on the COS method, for pricing Bermudan options backwards
in time via Bellman’s principle of optimality. The problem is solved backwards
in time, with

o u(x, tM; = g(x& B fu(x X |
1) = e AR [y o tm)| Xt = 2],
w(z,tm—1) = max|g(z), c(z,tm-1)], 2<m< M, (25)
(mo’tO) = c(xo,to).

Function ¢(z, t,,—1) is called the continuation value and is approximated by the
COS formula

o, ) = €T Z R {dnevy () iz } Up(tm), — (26)

The Fourier coefficients of the value function in (26) are given by

b
Ui (tm) = 2 / u(y t) cos (kri=2) dy. (27)



The recursive algorithm to recover the coefficients Uy (t,,) makes use of an FFT
algorithm for the fast computation of matrix-vector multiplications (see [FO09]).
Increasing the number of early-exercise dates to infinity resembles an Amer-
ican option. We will use a 4-point Richardson-extrapolation scheme on the
Bermudan option values with small M to approximate American option val-
ues. Let u(xg,to; M) denote the Bermudan option value with M time steps.
We calculate the extrapolated value, @g(xq,to; M), by the following 4-point
Richardson-extrapolation scheme (with ko = 1,k; = 2,ky = 3)

i (z0, to; M) == [64u(x0, to; 8M) — 560 (w0, to; 4M)
+ 1da(zo, to; 2M) — (o, to; M)|. (28)

For the standard parameters we compute @g(zo,t0;4) and for the challenging
parameters @ g(xo, to; 8).
3.3 Barrier call up-and-out

Similar as the Bermudan-style option we solve a discrete barrier call up-and-out
backwards in time with (h = In(B/K))

TEN N R T I
>
( 1) = 0 l‘_h,’ 2<m< M, (29)
(T, tm—1) T <h,
(,:Eo,t()) = C($0,t0)~
u};:allup&out (T) _ ﬁ[{ (Xk (()7 h,a, b) — g (07 h,a, b)) ) (30)

Increasing the number of early-exercise dates to infinity resembles the contin-
uous barrier option. We will use the following 4-point Richardson-extrapolation
scheme (with ko = 1/2,k1 = 1,k = 3/2) on the discrete barrier option val-
ues with M time steps, 4(xg,to; M), to approximate the continuous barrier call
up-and-out,

(w0, to; M) i= 51 [8i(wo, to; 8M) — (6v2 + 4)it(wo, to; 4M)
+ (3V2 + 2)it(wo, to; 2M) — (o, to; M)} . (31)

For the standard parameters we compute @g(zo,to; 16) and for the challenging
parameters @(xg, to; 1).



4 Problem 2: The Black-Scholes-Merton model
with discrete dividends

We can use the following COS formula to compute the option value at time 7:

N-1

i(w, ) =777 ZI {¢zevy (b i At=T —T) 5 a a}Uk( ). (32)

k=0
To determine the option value at time ¢y we use the following COS formula

N-1

!
w(z,tg) =€ 7 Z
k=0

with Fourier cosine coefficients

R {¢levy (bk_ia; At = T) eik?ﬂ'% } Z/{k (Ti) (33)

U(T7) = % /abu(y,T_)cos (kﬁ%) dy (34)

There holds u(y,77) = u(y + In(1 — D), 7).

We use discrete Fourier cosine transforms (DCT) to approximate the Fourier
cosine coefficients Uy (7). For this, we take N grid-points and define an equidis-
tant y-grid

Yn ::a—|—(n—|—%)b*Ta and Ay := b*Ta. (35)

We determine the value of function u(y,7~) = u(y + In(1 — D),7") on the N
grid-points. The midpoint-rule integration gives us

2

Uk(T_)

Q

ﬁu(yn, T7)cos (k‘ﬂ'%) Ay

P
D

u(yn, 7)) cos (km2atl)

2w

P
D!

u(yn +In(1 — D), %) cos (kr2d) 2. (36)

3
Il
o

The appearing DCT (Type II) can be calculated efficiently by, for example, the
function dct of MATLAB.

5 Problem 3: The Black-Scholes-Merton model
with local volatility

The asset price is modeled by a local volatility model

dS, = f(Se, t)dt + &(Sp, t)dW,, (37)



with (S,t) = rS and (S,t) = 0(S5,t)S. We approximate the process by an
Order 2.0 simplified weak Taylor scheme (see [RO14]), i.e

We define a time-grid tg, t1,...,tm,...,tyr = T, with fixed timesteps At :=
tm+1 — tm. For notational convenience we write S, = S;,, and Awp,41 =
Wty — Wi, - The approximated process is denoted by S5 = StAm. We start
with S§& = Sy and following forward scheme is used to determine the values
SAJr17 form=0,...,.M —1,

SﬁJrl = Sﬁ + m(SnAm tm) At + <(Sﬁv tm)Awm 41 + H(Sﬁ, tm)(Awm+1)2 (38)
with

m(S,t) = ju(S,t) — 35(5,)7s (S, 1)
+ 5 (1e(S,8) + i1(S, )as (S, 1) + 37iss (S, 1)7%(S, 1)) At, (39)
(S,t) =0a(5,1) (40)
+ 1 (5s(S.1)a (S, t) + G4(S,t) + (S, 1)7s(S, t) + $555(S,1)a%(S, 1)) At

The characteristic function of S5 11, given S4 = S, in equation (38) is given by

gasﬁ+l(w|5$ =5)=E [exp (inﬁH) ’Sﬁ = S]

le 2 , _
— exp <in +iwm(S, t) At — M) (1 — 2iwr(S, tm)AL) 2.

(41)
The option pricing problem is solved backwards in time, with M = 17,
u(S,tn) = g(5),
{ u(S.tuor) = e SE[u(SEt)ISA, =5, 1<m<m
We use the COS formula
(S, t—1) = e "AE [u(sf n)lSE_, =S|

= e At Z {WSA 7Ta|5ﬁ = S)eilmﬁ } ukA(tm) (43)

and the Fourier cosine coefficients U:(t,,) are approximated by using DCT as
explained in Section 4.

6 Problem 4: The Heston model for one under-
lying asset
The asset price is modeled by the Heston model
dSt = TStdt + oy ‘/tthl, (44)
dVy = k(0 — V3)dt + o/ V;dW}2, (45)



where W, = (W}, W?) is a 2D correlated Wiener process with correlation
dW}dW]} = p;jdt. We switch to the scaled log-asset price process, X; :=
In(S;/K). The characteristic function reads

Vip 1—e DAt

Brevy(w; Vi) = exp (z’ert + Sf oa—pat (K —ipow — D))

- exp (32 (At(nfipowa) —2In (%))) ; (46)
D = +/(k —ipow)? + (w2 + iw)o?, (47)
G = ZiewiD- (48)

7 Problem 5: The Merton jump diffusion model
for one underlying asset
The asset price is modeled by the Merton jump diffusion model
dSy = (r — \)Sydt + oS dW; + (&7 — 1)S;dg;. (49)

Here ¢ := E[e” — 1] and ¢; is a Poisson process with intensity rate A. The jumps
J are normally distributed with mean v and standard deviation §. We switch
to the scaled log-asset price process, X; := In(S;/K),

dX; = (r — X — 20?)ds + odW, + Jdg;. (50)

The corresponding characteristic function reads

1
Drevy(w) = exp (iw(r — X — $0?)At — Jw?o?At) AAHexplivw—5020%) 1) (51)

8 Problem 6: The Black-Scholes-Merton model
for two underlying assets

The asset prices evolve according to the following dynamics:
dSi = rSidt + o;SidW;, i=1,2, (52)
where Wy = (W, W2) is a 2D correlated Wiener process with correlation
dWEdW] = p;;dt. We switch to the log-processes X} := In S}:
dX; = (r — Lo?)dt + o;dWy. (53)

The log-asset prices at time T', given the values at time ¢, are bivariate normally
distributed,
2

. o 1 : ; e T (Fs O isti
with p; = r — 507 and covariance matrix 3;; = 0;0;p;; At. The characteristic

function reads as p(w|x) = €X'“ )0y, (W), With

Prevy(w) = exp(ip' Atw — w'Sw). (55)



The 2D-COS formula for approximation of u(x,ty) reads (see [RO12])

a(x, to)

Ny— 1N2 1

7TAtZ Z [ {¢levy (b1 ——— erkzwz)exp (Zkﬁr ay JerQWbZ .

k1=0 k2=0

ukl,kz (T)

(56)

_ ko 1 — (L1 _ T2—az
{qblew <b1 o bz—az) exp (Zklﬂ' zk:27r . ) }

The Fourier cosine coefficients of the payoff function are given by

)y

b2 b1
2 2 y2\+ yi—a y2—a
Ui ko (T) = 520 05 as / / (e¥' — €¥2)T cos (klﬂbi—ai) cos (kgw bz_az) dy1dya,
az al

(57)
for which an analytic solution is available and can be found using, for instance,
Maple 14.
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