Notes on the BENCHOP implementations for the
FDAD method

Lina von Sydow (1ina@it.uu.se)

March 3, 2015

Abstract

This text describes the FD-AD method and its implementation for the
BENCHOP-project.

1 Spatial discretization

The problems considered are all on the form

@Jr,cu:o , t€0,T] (1)
ot
where £ is a partial-(integro) operator in one or two spatial dimensions.We will
describe the spatial discretization with adaptivity for a one-dimensional problem
in s, . The generalization to a two-dimensional problem is straight-forward and
can be found in , and .

We discretize (1) on an equidistant grid s; using centered, second-order finite
differences such that for a computed solution wuj, € C? it holds

up = u + hc(s) (2)

after neglecting high-order terms and hence ug, = u + (2h)%c(s). Using the
second-order accuracy also in the local discretization error in space 73, we get

h = h%n(s). (3)
From the definition of the local truncation error 7, = Lpu — Lu and (2) we get
Th — ﬁhuh - Eu - hQ,ChC([L') , Top = ,Cghuh — Eu — h2£2h0($), (4)

where the term Lopuy is defined as the operator Lo acting on every second
element in up. Subtracting the first equation in (4) from the second, and defining
0p = Lpup, and dop, = Lopuy, gives

Ton — Th = Oon — O — h*(Lon — Lp)e(x) = dap, — 6, + O(h?).



Now using (3) and omitting high-order terms we get

don — 0, dop, — 0
n(s) ~ g L Tls) = e (5)

i.e. we can estimate 7(s) by computing a solution uj, using the spatial discretiza-
tion h and employ (5). If we require |7,| = |h®n(z)| < € for some tolerance ¢
we can obtain this by computing a solution using the new spatial discretization
h(z) defined by

TR (s)]

To prevent us from using too large spatial steps, we introduce a small parameter
d and define

h(s)=h

€

h(z) =h e d

(6)

We use extrapolation of 77, close to the boundaries s = Spin, § = Smax and
U = Umax t0 remove the effects caused by the boundary conditions used. To
ensure a smooth 73 we perform ¢ smoothing iterations according to

Th(sk) = (Th(sk—1) + 273, (sk) + 75 (sk41)) /4.

Since (1) is time-dependent the local discretization error 7, will vary in time.
We will use the solution uj at three different time-steps 0, T/3, and 27/3 and
use max |7p| over these time-steps when we compute the new computational
grids.

We end this section by summarizing the algorithm for adaptivity as follows:

1. Compute a solution using a coarse spatial grid with N, grid-points in space
and a coarse temporal discretization with M, time-steps.

2. Estimate the local truncation error on this grid and compute a new spatial
grid using (6) for some given e.

3. Compute a new solution using the new spatial grid with Ny grid-points
in space and My time-steps.

2 Temporal discretization

The spatial discretization described in Section 1 leads to the system of ordinary

differental equations

duh
— 4+ A =
7 + Apup =0, (7)

where Ay, for a one-dimensional problem is a tri-diagonal matrix of size N x N.
For most benchmarking problems we have used discontinuous Galerkin in time
to solve (7), and when it for some reason didn’t compute accurate solutions, we
used BDF-2.



2.1 Discontinuous Galerkin

The time-interval [0, T is partitioned into M subintervals {I,,, = (t;,—1,tm)}M_;
of size k = t,, — typ_1 = % Define P"(I,,,) as the space of polynomials of de-
gree r or less on the interval I,, and U = {U : Uy, € P"(I,)} to be the finite
element space containing the piecewise polynomials. The solution U is con-
tinuous within each time interval I,,, but may be discontinuous at the nodes
t1,...,tap—1. We define the one-sided limits of a piecewise continuous function
u(t) as u,b == lim, o+ u(ty, + v), u,, := lim,_,o+ u(t;, — v), and the “jump” in
u(t) across tpy, as [up] == ul —u.

The dG method of degree r (dG(r) to solve (7) reads as follows: Find U € U,

satisfying Uy = ug, such that S0 _ [, (U~ AU )w(t) dt+ 30 _ [Unp—1]w(tym—1) =

m=1
0 for all w(t) € U. In practice U can be computed in each interval

/ (Us — AU Yw(t) dt + [Upn—rt0(tm—1) = 0 (8)
Im

for m =1,...,M. Let {} ", be a basis of the polynomial space P, (—1,1)
and let time shape functions on time interval I,,, be given by ;0 F, L where the
mapping Fy, : (—1,1) = I, is given by t = F,(2) = 3 (tm—1+tm)+ skz, x€
(=1,1). Since the dG approximation U,, in each time interval I, is in the
polynomial space P, (I,,), it can uniquely be expressed in the basis {go};'zo as
U, = Z;ZO Um i (pjo F,,1). Inserting this into (8), and letting the test function
w(t) be the basis {90};207 we get after some algebraic manipulations

Tm k/’ Tm
> (Cz‘j —5Gi 'A> Um,g = D fmis (9)
i,j=0 i=0

. Tom 1
with fri = wi(=1) 32570 0i(Dum—14, Cij = [_; ¢jpidr + i(=1)pi(=1),
Gij = Ll1 @;pi dr. Dropping the subscript m for sake of readability and repre-
senting (9) in matrix form results in

<C®I’;G®A>uf, (10)

where ® is the Kronecker product and u denotes the coefficient vector of U,,,
that is u = (um,o . umﬁ,m)T.

By choosing the temporal shape functions to be the normalized Legendre
polynomials, we get G = I and Cj; = o, (i—|—1/2)1/2 (j—|—1/2)1/2, e
(—1)i*7 if j < i and 1 otherwise. The matrix C is diagonalizable in C, and thus
there exists a matrix Q € CU+Dx(+1) guch that Q" 'CQ = diag(\o, ..., \).
Multiplying (10) by Q7' ® I from the left gives (T@M - 2I® A)w = g,
with w = (Q7 ! ® I)u, and g = (Q~! ® I)f. This system is block-diagonal and
completely decouples into

k
()\jM—ZA) w;=g;, j=0,...,m (11)



Hence, in each time-step we have to solve the r 4+ 1 linear systems in (11) of size
N.

2.2 BDF-2
BDF-2 to solve (7) reads
3 1
iuz =k, Apuj, + QUZ_l — §u2_2. (12)

Since BDF-2 is a multi-step method we need to use a different method for the
first time-step. We have used Euler-backward

uy, =k, Apuy +ul. (13)

3 Solution of linear systems of equations

Both discontinuous Galerkin in time and BDF-2 leads to large systems of linear
equations that have to be solved each time-step. We have solved them by per-
forming an LU-factorization prior to the time-stepping with subsequent solves
with these factors each time-step.

4 Detalils for different benchmark problems
The parameters that are common for all benchmark problems are:

d = 0.01,

qg = 10

4.1 Benchmark problem 1-3
e The boundary conditions used for the one-dimensional problems are
%y 0

o _
651;:0 y S = Smax

y S = Smin

together with one-sided differences for % at both spin, and Spax-

e The time-stepping method used is dG(1).

4.1.1 Problem 1

e The computation of A in Sy is accomplished through a centered finite

@(So+h)—i(So—h)
2k

solution and h is the smallest spatial step in the adaptive grid.

difference where u is an interpolation of the computed



e The computation of I' in Sy is accomplished through a centered finite

difference

@(So+h)—2i(So)+u(So—h)

h2

where u is an interpolation of the com-

puted solution and A is the smallest spatial step in the adaptive grid.

e The computation of V in Sy is accomplished through a centered finite dif-

ference

(S0,1.00010) —ii(S0,0.99990)

where @ is an interpolation of the com-

0.00020
puted solution.

Problem Smin  Smax Ne M, € Ny My ™
la) SP 0 4K 41 6 3.3e3 113 6 dG(1)
1b) SP 0 4K 41 6 5.0e-5 989 189 BDF-2
1c) SP 0 4K 41 6 1.3e3 197 11 dG(1)
la) CP 0 4K 61 6 2.0e8 61993 71 dG(1)
1b) CP 0 4K 61 6 3.7e-4 465 6 BDF-2
1c) CP 0 4K 61 6 2.0e-7 34517 69 dG(1)
la) A SP 0 4K 41 6 8.0e4 221 6 dG(1)
la) T' SP 0 4K 41 6 5.4e-4 269 6 dG(1)
la) V SP 0 4K 41 6 4.1le-4 309 50  dG(1)
la) A CP 0 4K 61 6 2.0e-8 61993 73 dG(1)
la) T' CP 0 4K 61 6 9.0e-7 92409 193 dG(1)
la) ¥V CP 0 4K 61 6 1.0e-8 87665 189 dG(1)

Table 1: Parameters used for Problems 1. Here SP and CP mean Standard
Parameters and Challenging Parameters respectively, and TM stands for Time-

stepping Method.

4.1.2 Benchmark problem 2
4.1.3 Benchmark problem 3

4.2 Benchmark problem 6



Problem Smin  Smax N, M, € Ny My ™™

2) European call 0 4K 41441 6+6 26e4 537+377 6+6 dG(1)
2) American call 0 4K 41441 646 27¢4 5254401 6+6 dG(1)

Table 2: Parameters used for Problem 2. Here TM stands for Time-stepping
Method. Ny = 537 + 377 means that 537 spatial grid-points were used between
T and oT', and 377 spatial grid-points between o1 and 0, and similarily for NV,
My, and M..

Problem Smin Smax Nc Mc € Nf Mf ™

3) Local volatility smooth 0 4K 41 6 3.5e4 353 38 DBDF-2
3) Local volatility implied 0 4K 41 6 1.7e4 725 31 BDF-2

Table 3: Parameters used for Problem 3. TM stands for Time-stepping Method.

Problem sl s} s2 s2 N} N2 M, € N} NJ% My ™

min max min max c

6) 0 350 0 175 101 101 10 3.6e-3 277 409 40 BDF-2

Table 4: Parameters used for Problem 6. TM stands for Time-stepping Method.



