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Abstract

This text describes the FD-NU method and its implementation for the
BENCHOP-project.

1 Spatial discretizations

For example, under the Black-Scholes model European option prices u satisfy
the PDE
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where o and r are the volatility and interest rate, respectively.
We employ quadratically refined grids defined by
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where K is the strike price. The constant 7 is chosen to be % except for the
barrier options and under the Merton model. For the European spread options,
the grids for the both spatial directions are given by the above formula with
K =100.

For the Heston model, the variance grid is defined by
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The spatial derivaties are mainly discretized using the central finite differ-
ences. Let the grid steps be denoted

AS,’ZSi+1—Si, i:O,l,...,n—l.

Then the approroximations for the first-order and second-order spatial deriva-
tives are
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respectively, where u; denotes the grid point value u(s;).
Appying the above finite differences lead to semi-discrete system

u+Au=D>b.

When the volality is low compared to the interest rate the first-order spatial
derivative term dominates the second-order spatial derivative term in the PDE
(1). It is well-known that in such a case the central finite differences are not
accurate. In this case, we employ a semi-Lagrangian discretization [4] along the
trajectory a(s,7) = se"(""!) at the given time t. Thus, a,(s,7) = rse’ (771,
The Lagrangian derivative along this trajectory is

Du
E(a(s,t),t) = us(a(s,t),t) + us(a(s,t),t)ar(s,t).

Thus, we have

ug(a(s,t),t) = %?(a(s,t),t) —us(a(s,t),t)ar(s,t) = %(a(s,t),t) — rsug(s,t).

Substituting this to (1) leads to

DU a(s,0),8) + So2s2uas(als, 1), 1) — ru(als, ), ) = 0.
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Thus, this eliminates the problematic first-order derivative term.

For the integral in the Merton model a quadrature is employed; for details
see [6]. The treatment of jumps lead to matrix-vector multiplications which are
performed without any FFT acceleration.

2 Temporal discretizations

Rannacher smoothed [5] Crank-Nicolson and IMEX-CNAB schemes are used
for pure diffusion models and jump-diffusion models, respectively. The uniform
time step At = T'/m is employed.

The smoothing of the Crank-Nicolson method is performed by taking the
first 2 mg half time steps by the implicit Euler method given by

(I—i—%A)uk :uk+1/2+%bk, k:m—%7m—1,...,m—mE.
Four implicit Euler smoothing steps are used (mg = 2) except for the spread
option eight implicit Euler steps are used (mg = 4). Ater that Crank-Nicolson
steps
(I+5A)uf = (I-§LA)u" 4+ £ (b7 +bFH) | (2)



k=m—mg—1,...,0, are performed.

With the semi-Lagrangian discretization the Crank-Nicolson method reads
(I n %j&) ub = (1 - %K) Puhtl At (b"’ n E’f“) . k=m-—mp—1,...,0,
where the matrix P interpolates the values at the points (s, s1,- .., Sm)e >t
based on the grid points values at (sg, $1,.-.,8mn). In the Matlab implemen-
tation, we use the built-in cubical interpolation. The right-hand side bFH s
computed with a similar correction. The matrix A is A without the first-order
spatial term.

For models with jumps the IMEX-CNAB scheme is employed; see [7]. The
jump operator is treated explicitly using the Adams-Bashfort method and the
rest implicitly using the Crank-Nicolson method. For the first four half time
steps the explicit and implicit Euler methods are used. For details, see [7, 8, 3].

Resulting linear systems are solved using LU decomposition which is formed
once before the first time step.

The discrete dividend is handled by performing appropriate interpolation
using Matlab’s built-in spline interpolation at the time of dividend payment.

3 American options

For American options, the linear complementarity problem (LCP) formulation
is used and it is discretized using the operator splitting method [1]; see also
[2, 3, 9]. For example, the discrete LCPs corresponding to the Crank-Nicolson
steps read

min {(I+ 5PA) u® — (I- §PA) u"*! = 5t (b" + b*1) u* — g} =0,

where the minimum is taken componentwise and g is a vector containing the grid
point values of the payoff function. The operator splitting method counterpart
of the above LCPs have two substeps: solve the vector u* from the system of
linear equations

(I+ %A) l"ik: _ (I— %A) uk?+1 + % (bk +bk+1) +AtAk+17
and solve the vectors u* and A* from the LCP
min{)\k, ukfg} =0, Ak:)\k+1+ft(ukfﬁk).
This LCP can be solved fast componentwise. The Lagrange multiplier A™
required to start time stepping is chosen to be the zero vector 0.
4 Approximations for Greeks

For computing the Greeks Delta A = uy, Gamma I' = ugzs, and Vega V = u,,
we employ the central finite differences. After computing the options prices wu,



A and I are computed by first computing the corresponding spatial derivatives
using the above central finite differences at grid points and then using Matlab’s
built-in spline interpolation A and T' are obtained at desired locations. Thus,
computing A and I' has essentially the same computational cost as computing
the option prices. For computing V' the option prices are computed at desired
locations with the volatilities 740.5x 10~% and then V is obtained by subtracting
these prices from each other and multiplying the result by 10%*. Thus, the
computation of V is roughly two times more expensive than computing the
option prices.
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