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Abstract

This text describes the FD-NU method and its implementation for the
BENCHOP-project.

1 Spatial discretizations

For example, under the Black-Scholes model European option prices u satisfy
the PDE

ut(s, t) +
1

2
σ2s2uss(s, t) + rsus(s, t)− ru(s, t) = 0, s > 0, t ∈ [0, T ), (1)

where σ and r are the volatility and interest rate, respectively.
We employ quadratically refined grids defined by

si =

[(
i

γn
− 1

) ∣∣∣∣ iγn − 1

∣∣∣∣+ 1

]
K, i = 0, 1, . . . , n,

where K is the strike price. The constant γ is chosen to be 4
10 except for the

barrier options and under the Merton model. For the European spread options,
the grids for the both spatial directions are given by the above formula with
K = 100.

For the Heston model, the variance grid is defined by

vj =

(
j

nv

)2

, j = 0, 1, . . . , nv.

The spatial derivaties are mainly discretized using the central finite differ-
ences. Let the grid steps be denoted

∆si = si+1 − si, i = 0, 1, . . . , n− 1.

Then the approroximations for the first-order and second-order spatial deriva-
tives are

us(si) ≈
1

∆si−1 + ∆si

[
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∆si−1
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∆si−1
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and

uss(si) ≈
2

∆si−1 + ∆si

[
1

∆si−1
ui−1 −

(
1

∆si−1
+

1

∆si

)
ui +

1

∆si
ui+1

]
,

respectively, where ui denotes the grid point value u(si).
Appying the above finite differences lead to semi-discrete system

u̇ + Au = b.

When the volality is low compared to the interest rate the first-order spatial
derivative term dominates the second-order spatial derivative term in the PDE
(1). It is well-known that in such a case the central finite differences are not
accurate. In this case, we employ a semi-Lagrangian discretization [4] along the
trajectory a(s, τ) = ser(τ−t) at the given time t. Thus, aτ (s, τ) = rser(τ−t).
The Lagrangian derivative along this trajectory is

Du

Dt
(a(s, t), t) = ut(a(s, t), t) + us(a(s, t), t)aτ (s, t).

Thus, we have

ut(a(s, t), t) =
Du

Dt
(a(s, t), t)− us(a(s, t), t)aτ (s, t) =

Du

Dt
(a(s, t), t)− rsus(s, t).

Substituting this to (1) leads to

Du

Dt
(a(s, t), t) +

1

2
σ2s2uss(a(s, t), t)− ru(a(s, t), t) = 0.

Thus, this eliminates the problematic first-order derivative term.
For the integral in the Merton model a quadrature is employed; for details

see [6]. The treatment of jumps lead to matrix-vector multiplications which are
performed without any FFT acceleration.

2 Temporal discretizations

Rannacher smoothed [5] Crank-Nicolson and IMEX-CNAB schemes are used
for pure diffusion models and jump-diffusion models, respectively. The uniform
time step ∆t = T/m is employed.

The smoothing of the Crank-Nicolson method is performed by taking the
first 2 mE half time steps by the implicit Euler method given by(

I + ∆t
2 A

)
uk = uk+1/2 + ∆t

2 bk, k = m− 1
2 ,m− 1, . . . ,m−mE .

Four implicit Euler smoothing steps are used (mE = 2) except for the spread
option eight implicit Euler steps are used (mE = 4). Ater that Crank-Nicolson
steps (

I + ∆t
2 A

)
uk =

(
I− ∆t

2 A
)
uk+1 + ∆t

2

(
bk + bk+1

)
, (2)
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k = m−mE − 1, . . . , 0, are performed.
With the semi-Lagrangian discretization the Crank-Nicolson method reads(

I + ∆t
2 Ã

)
uk =

(
I− ∆t

2 Ã
)
Puk+1+ ∆t

2

(
bk + b̃k+1

)
, k = m−mE−1, . . . , 0,

where the matrix P interpolates the values at the points (s0, s1, . . . , sm)er∆t

based on the grid points values at (s0, s1, . . . , sm). In the Matlab implemen-
tation, we use the built-in cubical interpolation. The right-hand side b̃k+1 is
computed with a similar correction. The matrix Ã is A without the first-order
spatial term.

For models with jumps the IMEX-CNAB scheme is employed; see [7]. The
jump operator is treated explicitly using the Adams-Bashfort method and the
rest implicitly using the Crank-Nicolson method. For the first four half time
steps the explicit and implicit Euler methods are used. For details, see [7, 8, 3].

Resulting linear systems are solved using LU decomposition which is formed
once before the first time step.

The discrete dividend is handled by performing appropriate interpolation
using Matlab’s built-in spline interpolation at the time of dividend payment.

3 American options

For American options, the linear complementarity problem (LCP) formulation
is used and it is discretized using the operator splitting method [1]; see also
[2, 3, 9]. For example, the discrete LCPs corresponding to the Crank-Nicolson
steps read

min
{(

I + ∆t
2 A

)
uk −

(
I− ∆t

2 A
)
uk+1 − ∆t

2

(
bk + bk+1

)
, uk − g

}
= 0,

where the minimum is taken componentwise and g is a vector containing the grid
point values of the payoff function. The operator splitting method counterpart
of the above LCPs have two substeps: solve the vector ũk from the system of
linear equations(

I + ∆t
2 A

)
ũk =

(
I− ∆t

2 A
)
uk+1 + ∆t

2

(
bk + bk+1

)
+ ∆tλk+1,

and solve the vectors uk and λk from the LCP

min
{
λk, uk − g

}
= 0, λk = λk+1 + 1

∆t

(
uk − ũk

)
.

This LCP can be solved fast componentwise. The Lagrange multiplier λm

required to start time stepping is chosen to be the zero vector 0.

4 Approximations for Greeks

For computing the Greeks Delta ∆ = us, Gamma Γ = uss, and Vega V = uσ,
we employ the central finite differences. After computing the options prices u,
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∆ and Γ are computed by first computing the corresponding spatial derivatives
using the above central finite differences at grid points and then using Matlab’s
built-in spline interpolation ∆ and Γ are obtained at desired locations. Thus,
computing ∆ and Γ has essentially the same computational cost as computing
the option prices. For computing V the option prices are computed at desired
locations with the volatilities σ±0.5×10−4 and then V is obtained by subtracting
these prices from each other and multiplying the result by 104. Thus, the
computation of V is roughly two times more expensive than computing the
option prices.
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