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1 Node generation

Radial basis function (RBF) methods with infinitely smooth RBFs such as the
multiquadric RBFs φ(r) =

√
1 + ε2r2 used here are sensitive to discontinuities

(as many other high order methods). In order to get a high accuracy in the
strike region (where the target evaluation points are located), we cluster the
nodes around K in most cases. This makes the RBF interpolation matrix more
ill-conditioned, and a larger shape parameter ε needs to be used. Furthermore,
the accuracy away from the strike region will have larger errors than with a
uniform node distribution. However, this is the computationally most efficient
way to reach the target accuracy.

2 The usage of differentiation matrices

An RBF approximation

u(x) =

N∑
j=1

λjφ(||x− xj ||)

can be expressed in terms of its coefficients λ. However, the coefficients can
become large and oscillatory, while the function values (if the problem is not
too ill-conditioned) stay reasonable.

In all the codes implemented here, we use differentiation matrices, meaning
theat we express all operators in terms of the nodal values uj ≈ u(xj), j =
1, . . . , N . We have

Aλ = u,

where A is the interpolation matrix. Then evaluating a derivative of the RBF
approximation can be expressed as

Lu ≈ Bλ = BA−1u,

where B is the matrix with the derivative operator appled to the RBFs. Fur-
thermore, we collocate the PDE at interior nodes and the boundary conditions
at the boundary nodes, leading to a square linear system.
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3 Problem 1

3.1 Scaling

The initial formulation in the paper of the Black-Scholes-Merton PDE is back-
wards in time.

∂u

∂t
+

1

2
σ2s2

∂2u

∂s2
+ rs

∂u

∂s
− ru = 0.

We transform the time variable as τ = T − t to get a problem that is forward
in time. Furthermore, we scale the asset price variable to get a unit strike price
K̃ = 1 such that x = s/K. Finally, because we work in x, the payoff is scaled
by 1/K leading to a scaled solution v = u/K. This leads to the forward PDE

∂v

∂τ
=

1

2
σ2x2

∂2v

∂x2
+ rx

∂v

∂x
− rv. (1)

3.2 Boundary conditions

At the lower boundary, we impose the Dirichlet boundary condition

v(0, τ) = 0.

For the far-field boundary, here set to 4K̃ = 4, we use the asymptotic solution

v(x, τ) = x− K̃e−rτ .

Note that we could have optimized the truncation of the domain to get a lower
computational cost in some cases, but we have chosen to use the same value
everywhere for simplicity.

3.3 Evaluating the derivatives of the solution

Because of the scaling that has been performed on the solution and the inde-
pendent variable, applying the chain rule, we have

∂u

∂s
=
K

K

∂v

∂x

∂2u

∂s2
=

K

K2

∂2v

∂x2

3.4 Computing V
By differentiating (1) with respect to σ, we can get a PDE for ν̃ = ∂v

∂σ to get

ν = ∂u
∂σ = Kν̃

∂ν̃

∂τ
=

1

2
σ2x2

∂2ν̃

∂x2
+ rx

∂ν̃

∂x
− rν̃ + σx2

∂2v

∂x2
. (2)
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We compute v as we did before, but now, after taking one step for v, we will
also take a step for ν̃ using the second derivative of v in the forcing term. The
form of a BDF-2 step is

(I − β0∆tL)vn+1 = β1v
n + β2v

n−1. (3)

As the forcing term is part of the operator, it will be evaluated at the new time
level in each step.

The second derivative of v is evaluated analytically by differentiating the
RBFs.

4 Problem 2

Paying out a dividend in the PDE formulation can be seen as moving the grid
or changing the independent variable. We will start by expressing the two PDE
problems before and after the dividend in different variables, and then transform
them to the same grid.

European call with one proportional discrete dividend

The two subproblems that we need to solve are

∂v

∂τ
(τ, y) =

1

2
σ2y2

∂2v

∂y2
+ ry

∂v

∂y
− rv, 0 < τ ≤ (1− α)T, (4)

v(0, y) = max(0, y −K), (5)

v(τ, ymax) = ymax −Ke−rτ , (6)

v(τ, 0) = 0, (7)

where y = (1−D)x, and

∂u

∂τ
(τ, x) =

1

2
σ2x2

∂2u

∂x2
+ rx

∂u

∂y
− ru, (1− α)T < τ ≤ T, (8)

u((1− α)T, x) = v((1− α)T, y), (9)

u(τ, xmax) = (1−D)xmax −Ke−rτ , (10)

u(τ, 0) = 0. (11)

Instead of moving the solution from the y-grid to the x-grid, we can transform
the first problem so that we compute on the x-grid from the start. We change
variables so that we express both problems in x, which is the scaled asset price
today.

∂v

∂y
=
dx

dy

∂v

∂x
=

1

(1−D)

∂v

∂x

Substituting this into the first PDE problem we get

∂v

∂τ
(τ, x) =

1

2
σ2x2

∂2v

∂x2
+ rx

∂v

∂x
− rv, 0 < τ ≤ (1− α)T, (12)
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v(0, x) = max(0, (1−D)x−K), (13)

v(τ, xmax) = (1−D)xmax −Ke−rτ , (14)

v(τ, 0) = 0, (15)

What happens in fact, is that the problem becomes continuous, and the time
of the dividend payout does not matter as long as it takes place before the
expiration date.

American Call

We do the same thing regarding scaling, but at the time of the dividend, there
can be an opportunity to exercise, and we will update the solution according to
that. In order to be sure to have a time step exactly at the dividend, we run the
two parts one at a time. The spatial discretization matrices are the same, but
the time steps may be slightly different. The two sub problems that we solve
are

∂v

∂τ
(τ, x) =

1

2
σ2x2

∂2v

∂x2
+ rx

∂v

∂x
− rv, 0 < τ ≤ (1− α)T, (16)

v(0, x) = max(0, (1−D)x−K), (17)

v(τ, xmax) = (1−D)xmax −Ke−rτ , (18)

v(τ, 0) = 0, (19)

∂u

∂τ
(τ, x) =

1

2
σ2x2

∂2u

∂x2
+ rx

∂u

∂y
− ru, (1− α)T < τ ≤ T, (20)

u((1− α)T, x) = max(v((1− α)T, x), x−K) (21)

u(τ, xmax) = xmax −Ke−rτ , (22)

u(τ, 0) = 0. (23)

5 Problem 3

The second local volatility function is not valid for small values of s. We get
around this problem by using a constant volatilty value between zero and the
first s for which the volatility is computable.

6 Problem 4

The Heston PDE is given by

∂u

∂t
+

1

2
vs2

∂2u

∂s2
+ ρσvs

∂2u

∂s∂v
+

1

2
σ2v

∂2u

∂v2
+ rs

∂u

∂s
+ κ(θ − v)

∂u

∂v
− ru = 0.
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We perform the following transformations t = T − t, x = s/K and y = v/V ,
leading to

∂u

∂t
+

1

2
yV s2

∂2u

∂s2
+ ρσys

∂2u

∂s∂v
+

1

2
σ2 y

V

∂2u

∂v2
+ rs

∂u

∂s
+ κ(

θ

V
− y)

∂u

∂v
− ru = 0.

At y = 0, no boundary condition is needed. There should be some bound-
ary condition at y = ymax, such as, e.g, a homogeneous Neumann condition.
However, we were not able to get this to work well. Instead, we solve the prob-
lem on a thin slice around the target value in the volatility dimension, without
boundary condition for the upper volatility boundary.

7 Problem 5

We have not implemented this model with RBF methods yet. However, this is
entirely possible, see for example [1].

8 Problem 6

By noting that for this spread option, s2 + K acts as the effective strike price
if a line where s2 is fixed is considered, we can relate the truncation of the
domain to the one-dimensional case, such that the domain can be truncated at
s1 = 4(s2 +K). This means that we are solving in a triangular domain.

Boundary conditions are zero when either one of s1 and s2 is zero, and the
asymptotic solution u = s1 − s2 can be used at the far-field boundary. The
far-field boundary here being the truncation boundary.

Again, there is a problem with the boundary where s2 = s2,max. We did not
manage to get a working implementation with a derivative condition, and we
have instead chosen to leave the boundary open. The domain is made as small
as possible, while still keeping an accurate result for the target points.

In this case, it was more efficient to use uniform nodes than to cluster around
the strike.
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