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Short introduction to (global) RBF methods

Basis functions: φj(x) = φ(‖x − x j‖). Translates of one
single function rotated around a center point.

Example: Gaussians
φ(εr) = exp(−ε2r2)

Approximation:
sε(x ) =

∑N
j=1 λjφj(x )

Collocation:
sε(x i ) = fi ⇒ Aλ = f ε=3ε=1/3ε=1

Advantages:

• Flexibility with respect to geometry.

• As easy in d dimensions.

• Spectral accuracy / exponential convergence.

• Continuosly differentiable approximation.

E. Larsson, 2017-09-18 (3 : 77)
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Commonly used RBFs

Global infinitely smooth
Gaussian exp(−ε2r2), ε > 0

(Inverse) multiquadric (1 + ε2r2)β/2, ε > 0, |β| ∈ N

Global piecewise smooth
Polyharmonic spline (odd) |r |2m−1, m ∈ N
Polyharmonic spline (even) r2m log(r), m ∈ N
Matérn/Sobolev rνKν(r), ν > 0
C 2 Matérn (1 + r) exp(−r), v = 3/2

Compactly supported Wendland functions
C 2 and pos def for d ≤ 3, (1− r

ρ)4
+(4 r

ρ + 1), ρ > 0

C 2 and pos def for d ≤ 5, (1− r
ρ)4

+(5 r
ρ + 1), ρ > 0

E. Larsson, 2017-09-18 (4 : 77)
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Observations from the results of demo1.m

I As N grows for fixed ε, convergence stagnates.

I As ε decreases for fixed N, the error blows up.

I λmin = −λmax means cancellation.

I Coefficients λ→∞ means that cond(A)→∞.

I For small ε, the RBFs are nearly flat, and almost
linearly dependent. That is, they form a bad basis.
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Why is it interesting to use small values of ε?

Driscoll & Fornberg [DF02]

Somewhat surprisingly, in 1-D for small ε

s(x , ε) = PN−1(x) + ε2PN+1(x) + ε4PN+3(x) + · · · ,

where Pj is a polynomial of degree j and PN−1(x) is the
Lagrange interpolant.

Implications

I It can be shown that cond(A) ∼ O(Nε−2(N−1)), but
the limit interpolant is well behaved.

I It is the intermediate step of computing λ that is
ill-conditioned.

I By choosing the corresponding nodes, the flat RBF
limit reproduces pseudo-spectral methods.

I This is a good approximation space.
E. Larsson, 2017-09-18 (7 : 77)
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The multivariate flat RBF limit

Larsson & Fornberg [LF05], Schaback [Sch05]
In n-D the flat limit can either be

s(x , ε) = PK (x) + ε2PK+2(x) + ε4PK+4(x) + · · · ,

where

(
(K − 1) + d

d

)
< N ≤

(
K + d

d

)
and PK is a

polynomial interpolant or

s(x , ε) = ε−2qPM−2q(x) + ε−2q+2PM−2q+2(x) + · · ·
+ PM(x) + ε2PM+2(x) + ε4PM+4(x) + · · · .

The questions of uniqueness and existence are connected
with multivariate polynomial uni-solvency.

Schaback [Sch05]

Gaussian RBF limit interpolants always converge to the
de Boor/Ron least polynomial interpolant.

E. Larsson, 2017-09-18 (8 : 77)
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The multivariate flat RBF limit: Divergence

Necessary condition: ∃ Q(x) of degree N0 such that
Q(x j) = 0, j = 1, . . . ,N.
Then divergence as ε−2q may occur, where
q = b(M − N0)/2c and M = min non-degenerate degree.

Points Q N0 Basis M q
x − y 1 1, x , x2,

x3, x4, x5
5 2

x2 − y − 1 2 1, x , y , xy ,
y2xy2

3 0

x2 + y2 − 1 2 1, x , y , x2, xy ,
x3, x2y , x4

4 1

Divergence actually only occurs for the first case as ε−2.

E. Larsson, 2017-09-18 (9 : 77)
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The multivariate flat RBF limit, contd

Schaback [Sch05], Fornberg & Larsson [LF05]

Example: In two dimensions, the eigenvalues of A follow
a pattern: µ1 ∼ O(ε0), µ2,3 ∼ O(ε2), µ4,5,6 ∼ O(ε4),. . .

In general, there are

(
k + n − 1
n − 1

)
= (k+1)···(k+n−1)

(n−1)!

eigenvalues µj ∼ O(ε2k) in n dimensions.

Implications

I There is an opportunity for pseudo-spectral-like
methods in n-D.

I There is no amount of variable precision that will
save us.

I For “smooth” functions, a small ε can lead to very
high accuracy.

E. Larsson, 2017-09-18 (10 : 77)
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Multivariate interpolation

Theorem (Mairhuber–Curtis)

For a domain Ω ⊂ Rd , d ≥ 2 that has an interior point,
there is no basis of continuous functions f1(x ), . . . fN(x ),
N ≥ 2 such that an interpolation matrix A = {fj(x i )}Ni ,j=1

is guaranteed to be non-singular (no Haar basis).

Proof.
Let two of the points x i and xk change places along a
closed continuous path in Ω. When the two points have
changed places, two rows in A are interchanged, and
det(A) has changed sign. Then det(A) = 0 somewhere
along the path.

I For RBF approximation, A = {φ(‖x i − x j‖)}Ni ,j=1. If
two points change place, two rows and two columns
are swapped. Determinant does not change sign.

E. Larsson, 2017-09-18 (11 : 77)
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Positive definite functions

Definition (Positive definite function)

A real valued continuous function Φ is positive definite on
Rd ⇔ it is even and

N∑
j=1

N∑
k=1

cjckΦ(x j − xk) ≥ 0

for any parwise distinct points x1, . . . , xN ∈ Rd , cj ∈ R.

Theorem (Bochner 1933)

A function Φ ∈ C (Rd) is positive definite on Rd ⇔ it is
the Fourier transform of a finite non-negative Borel
measure µ on Rd

Φ(x ) =
1√

(2π)d

∫
Rd

e−ix ·ωdµ(ω).

E. Larsson, 2017-09-18 (12 : 77)
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Bochner Theorem contd

Partial proof

N∑
j=1

N∑
k=1

cjckΦ(x j − xk) =

=
1√

(2π)d

N∑
j=1

N∑
k=1

(
cjck

∫
Rd

e−i(x j−xk )·ωdµ(ω)

)

=
1√

(2π)d

∫
Rd

 N∑
j=1

cje
−ix j ·ω

N∑
k=1

cke
ixk ·ω

 dµ(ω)

=
1√

(2π)d

∫
Rd

∣∣∣∣∣∣
N∑
j=1

cje
−ix j ·ω

∣∣∣∣∣∣
2

dµ(ω) ≥ 0.

E. Larsson, 2017-09-18 (13 : 77)
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Example

The Gaussian is positive definite in any dimension

e−ε
2‖x‖2

=
1√

(2π)d

∫
Rd

1

(
√

2ε)d
e−‖ω‖

2/(4ε2)e ix ·ωdω

Theorem (Schoenberg 1938)

A cont function ϕ : [0,∞)→ R is strictly pos def and
radial on Rd for all d ⇔

ϕ(r) =

∫ ∞
0

e−r
2t2

dµ(t),

where µ is a finite non-negative Borel measure not
concentrated at the origin.

E. Larsson, 2017-09-18 (14 : 77)
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Results and consequences for RBF
approximation

I Non-singularity of RBF interpolation is guaranteed
for distinct node points and strictly pos def functions
such as the Gaussian and the inverse multiquadric.

I There are no oscillatory or compactly supported
RBFs that are strictly pos def for all d .
Because φ(r0) = 0 breaks theorem, cf. Bessel and Wendland.

I Non-singularity/positive definiteness of interpolation
matrix holds also for conditionally positive definite
RBFs augmented with polynomials.
Micchelli [Mic86], cf. multiquadric RBFs

E. Larsson, 2017-09-18 (15 : 77)
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Tensor product vs multivariate basis

Tensor product basis

s(x ) =
n∑

i=0

n∑
j=0

cijpi (x1)pj(x2)

Number of unknowns NT = (n + 1)d .

Multivariate basis
Thinking in terms of polynomials, a multivariate
polynomial space of degree n has dimension

NM =

(
n + d
d

)
=

(n + 1) · · · (n + d)

d!

Degrees of freedom for n = 8:

d 1 2 3

NT 9 81 729

NM 9 45 165
E. Larsson, 2017-09-18 (16 : 77)
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(Conditioning and errors)
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Comments on the results of demo2

I Error is small where condition is high and vice versa.

I Interesting region only reachable with stable method.

I Best results for small ε.
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Teaser: Conditioning for RBF–QR is perfect...
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The Contour-Padé method

Fornberg & Wright [FW04]

I Think of ε as a complex variable.

I The limit ε = 0 is a removable singularity.

I Complex ε for which A is singular lead to poles.

I Pole location only depend on the location of nodes.

Example

I Evaluate f (ε) = 1−cos(ε)
ε2

I Numerically unstable.

I Removable singularity at 0.

I Compute f (0) as average of
f (ε) around “safe path”.

Bad region

Safe path

Target point

Im ε

Re ε

E. Larsson, 2017-09-18 (19 : 77)
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The Contour-Padé method: Algorithm

I Compute s(x , ε) = AeA
−1f at M points around a

“safe path” (circle).
I Inverse FFT of the M values gives a Laurent

expansion

u(x) = . . .+ s−2(x)ε−4 + s−1(x)ε−2︸ ︷︷ ︸
Needs to be converted

+s0(x)+s1(x)ε2+s2(x)ε4+. . .

I Convert the negative power expansion into Padé
form and find the correct number of poles and their
locations

s−1ε
−2 + s−2ε

−4 + . . . =
p1ε
−2 + · · ·+ pmε

−2m

1 + q1ε−2 + · · ·+ qnε−2n
.

I Evaluate u(x) using Taylor + Padé for any ε inside
the circle.

E. Larsson, 2017-09-18 (20 : 77)
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The Contour-Padé method: Results
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I Stable computation for all ε with Contour-Padé.

I Limited number of nodes, otherwise general.

I Expensive to compute A−1 at M points.

I Tricky to find poles.

I Modern efficient version RBF-RA [WF17].

E. Larsson, 2017-09-18 (21 : 77)
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Expansions of (Gaussian) RBFs

On the surface of the sphere

Hubbert & Baxter [BH01]

For different RBFs there are expansions

φ(‖x − xk‖) =
∞∑
j=0

ε2j
j∑

m=−j
cj ,mY

m
j (x )

Cartesian space, polynomial expansion

For Gaussians

φ(‖x − xk‖) = e−ε
2(x−xk )·(x−xk )

= e−ε
2(x ·x )e−ε

2(xk ·xk )e2ε2(x ·xk )

= e−ε
2(x ·x )e−ε

2(xk ·xk )
∞∑
j=0

ε2j 2j

j!
(x · xk)j

E. Larsson, 2017-09-18 (22 : 77)
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Expansions of (Gaussian) RBFs contd

Mercer expansion (Mercer 1909)

For a positive definite kernel K (x , xk) = φ(‖x − xk‖),
there is an expansion

φ(‖x − xk‖) =
∞∑
j=0

λjϕj(x )ϕj(xk),

where λj are positive eigenvalues, and ϕj(x ) are
eigenfunctions of an associated compact integral
operator.

E. Larsson, 2017-09-18 (23 : 77)
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The RBF-QR method on the sphere

Fornberg & Piret [FP07]

φ(‖x − xk‖) =
∞∑
j=0

ε2j
j∑

m=−j
cj ,mY

m
j (x )

The number of SPH functions/power matches the RBF
eigenvalue pattern on the sphere.

If we collect RBFs and expansion functions in vectors,
and coefficients in the matrix B, we have a relation

Φ(x ) = B · Y = Q · E · R · Y (x )

The new basis Ψ(x ) = R · Y (x ) spans the same space as
Φ(x ), but the ill-conditioning has been absorbed in E .

E. Larsson, 2017-09-18 (24 : 77)
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The RBF-QR method in Cartesian space

Fornberg, Larsson, Flyer [FLF11]

The expansion of the Gaussian

φ(‖x − xk‖) = e−ε
2(x ·x )e−ε

2(xk ·xk )
∞∑
j=0

ε2j 2j

j!
(x · xk)j

+ The number of expansion functions for each power
of ε matches the eigenvalue pattern in A.

− The expansion functions are the monomials.

Better expansion functions in 2-D

I Change to polar coordinates.

I Trigs in the angular direction are perfect.

I Necessary to preserve powers of ε ⇒
Partial conversion to Chebyshev polynomials.

E. Larsson, 2017-09-18 (25 : 77)
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The RBF-QR method in Cartesian space contd

New expansion functions

{
T c
j ,m(x) = e−ε

2r2
r2mTj−2m(r) cos((2m + p)θ),

T s
j ,m(x) = e−ε

2r2
r2mTj−2m(r) sin((2m + p)θ),

Matrix form of factorized expansion

Express Φ(x ) = (φ(‖x − x1‖), . . . , φ(‖x − xN‖))T in
terms of expansion functions T (x ) = (T c

0,0,T
c
1,0, . . .)

T as.

Φ(x ) = C · D · T (x ),

where cij is O(1) and D = diag(O(ε0, ε2, ε2, ε4, . . .)).

Note that C has an infinite number of columns etc.

E. Larsson, 2017-09-18 (26 : 77)
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The RBF-QR method in Cartesian space contd

The QR part

The coefficient matrix C is QR-factorized so that

Φ(x ) = Q ·
[
R1 R2

] [ D1 0
0 D2

]
·T (x ), where R1 and

D1 are of size (N × N).

The change of basis

Make the new basis (same space) close to T

Ψ(x ) = D−1
1 R−1

1 QHΦ(x ) =
[
I R̃

]
· T (x ).

Analytical scaling of R̃ = D−1
1 R−1

1 R2D2

Any power of ε in D1 ≤ any power of ε in D2 ⇒
Scaling factors O(ε0) or smaller, truncation is possible.

E. Larsson, 2017-09-18 (27 : 77)
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demo3.m
(RBF interpolation in 2-D with and without RBF–QR)

E. Larsson, 2017-09-18 (28 : 77)



RBF–QR
Outline

Global RBFs
RBF limits

Stable methods

Convergence theory

RBF-PUM
Theoretical results
Numerical results

RBF-FD

Stable computation as ε → 0 and N →∞
The RBF-QR method allows stable computations for
small ε. (Fornberg, Larsson, Flyer [FLF11])

Consider a finite non-periodic domain.

Theorem (Platte, Trefethen, and Kuijlaars [PTK11]):

Exponential convergence on equispaced nodes ⇒
exponential ill-conditioning.

Solution #1:

Cluster nodes towards the domain boundaries.

E. Larsson, 2017-09-18 (29 : 77)
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An RBF-QR example with clustered nodes in a
non-trivial domain

f (x , y) = exp(−(x − 0.1)2 − 0.5y2)
N=793 node points
Cosine-stretching towards each boundary
Maximum error 2.2e-10

E. Larsson, 2017-09-18 (30 : 77)
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demo4.m
(RBF interpolation in 2-D with clustered nodes)
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Brief survey of Mercer based methods

Fasshauer & McCourt [FM12]

Eigenvalues and eigenfunctions in 1-D can be chosen as

λn =

√
α2

α2 + δ2 + ε2

(
ε2

α2 + δ2 + ε2

)n−1

,

φn = γne
−δ2x2

Hn−1(αβx),

where β =
(

1 +
(

2ε
α

)2
) 1

4

, γn =
√

β
2n−1Γ(n) , δ2 = α2

2 (β2 − 1).

I Eigenfunctions are orthogonal in a weighted norm.

I The QR-step is similar to that of previous methods.

I Tensor product form is used in higher dimensions ⇒
The powers of ε do not match the eigenvalues of A.

I New parameter α to tune.

E. Larsson, 2017-09-18 (32 : 77)
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Brief survey of Mercer based methods contd

De Marchi & Santin [DMS13]

I Discrete numerical approximation of eigenfunctions.

I W diagonal matrix with cubature weights.
Perform SVD

√
W · A ·

√
W = Q · Σ2 · QT .

The eigenbasis is given by
√
W−1 · Q · Σ.

I Rapid decay of singular values ⇒ Basis can be
truncated ⇒ Low rank approximation of A.

De Marchi & Santin [DMS15]

I Faster: Lanczos algorithm on Krylov space K(A, f ).

I Eigenfunctions through SVD of Hm from Lanczos.

I Computationally efficient.

I Basis depends on f . Potential trouble for f 6∈ NK (X )

For details it is a good idea to ask the authors :-)
E. Larsson, 2017-09-18 (33 : 77)
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Differentiation matrices and RBF-QR

Larsson, Lehto, Heryudono, Fornberg [LLHF13]

Let uX be an RBF approximation evaluated at the nodes.

To compute uY evaluated at the set of points Y , we use
Aλ = uX ⇒ λ = A−1uX to get

uY = AYλ = AYA
−1uX

where AY (i , j) = φj(yi ).

To instead evaluate a differential operator applied to u,

uY = ALYA
−1uX ,

where ALY (i , j) = Lφj(yi ).

To do the same thing using RBF–QR, replace φj with ψj .

E. Larsson, 2017-09-18 (34 : 77)
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Solving PDEs with RBFs/RBF-QR

Domain defined by: rb(θ) = 1 + 1
10 (sin(6θ) + sin(3θ)).

PDE:

{
∆u=f (x ), x ∈ Ω,
u=g(x ), x on ∂Ω,

Solution: u(x ) = sin(x2
1 + 2x2

2 )− sin(2x2
1 + (x2 − 0.5)2).

Collocation:(
A∆
X iA

−1
X

I

)(
uiX
ubX

)
=

(
f iX
gb
X

)
Evaluation:
uY = AYA

−1
X uX

Domain + nodes
E. Larsson, 2017-09-18 (35 : 77)
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demo5.m
(Solving the Poisson problem in 2-D using RBFs)
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Reproducing Kernel Hilbert spaces and
optimality

Let N (Ω) be a real Hilbert space of functions u : Ω→ R,
where Ω ⊆ Rd with inner product (·, ·)N (Ω).

Consider an RBF as a kernel K (x , y). The following
holds

(i) K (·, x ) ∈ N (Ω) for all x ∈ Ω.

(ii) (u,K (·, x ))N (Ω) = u(x ).

Let I (u) be the interpolant of u ∈ N (Ω). Then

‖I (u)‖N (Ω) ≤ ‖u‖N (Ω)

Consider a finite dimensional subspace N (X ) of the
native space N (Ω). Then

(I (u)− u, v)N (Ω) = 0 for all v ∈ N (X ).
E. Larsson, 2017-09-18 (37 : 77)
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Ingredients for exponential convergence
estimates

I Dependence on geometry through interior cone
conditions.
Approximation quality depends on boundary shape.

I General sampling inequalities based on polynomial
approximation.
These tell us how much a smooth error can grow between

nodes.

I Embedding constants relating Native spaces to
Sobolev spaces.
These are needed to go from algebraic to exponential

estimates.
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Interior cone conditions

r
θ

R

Definition (Interior cone condition)

A domain Ω ⊂ Rd satisfies an interior cone condition
with radius r and angle θ if every x ∈ Ω is the vertex of
such a cone that is contained entirely within Ω.

Definition (Star shaped)

A domain Ω ⊂ Rd is star shaped with respect to B(xc , r)
if for every x ∈ Ω, the convex hull of x and B(xc , r) is
entirely enclosed in Ω.

Example

A star shaped domain wrt B(xc , r),
enclosed by B(xc ,R) satisfies
an interior cone condition with
radius r and angle θ = 2 arcsin( r

2R ).

Narcowich, Ward, Wendland [NWW05]
E. Larsson, 2017-09-18 (39 : 77)
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General sampling inequalitites

Rieger & Zwicknagl [RZ10]

Bound derivatives of u through polynomial bounds

|Dαu(x )| ≤ |Dαu(x )− Dαp(x )|+ |Dαp(x )|

Detailed computations with averaged Taylor polys

‖Dαu‖Lq(Ω) ≤
C k
S δ

k−d( 1
p
− 1

q
)

Ω

(k − |α|)!
(δ
−|α|
Ω + h−|α|)|u|W k

p (Ω)

+ 2δ
d
q

Ωh
−|α|‖u‖`∞(X ),

where δΩ is the diameter of Ω, h is the fill distance
(largest ball empty of nodes from X ), and the constant
CS depends on d , p, and θ, 1 ≤ p <∞, 1 ≤ q ≤ ∞.

Fill distance must be small enough and k large enough.
E. Larsson, 2017-09-18 (40 : 77)
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Embedding constants

Rieger & Zwicknagl [RZ10]

Assume there are embedding constants, for all k such that

‖u‖W k
p (Ω) ≤ E (k)‖u‖H(Ω)

for some space H(Ω) of smooth functions. Further
assume that E (k) ≤ C k

Ek
(1−ε)k , for ε,CE > 0.

Then, the general sampling inequality can be rewritten as

‖Dαu‖Lq(Ω) ≤ e
C log(h)√

h ‖u‖H(Ω) + 2δ
d
q

Ωh
−|α|‖u‖`∞(X ),

where C = ε
√
c0/4 and c0 = min{1, r sin θ

4(1+sinθ)}.
We are still considering star shaped domains.

E. Larsson, 2017-09-18 (41 : 77)
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Lipschitz domains

Rieger & Zwicknagl [RZ10]

For a general Lipschitz domain that satisfies a uniform
interior cone condition, we create a cover of Ω consisting
of star shaped subdomains.

This affects the terms in front of the norms, but not the
essentials.

For E (k) ≤ C k
Ek

(1−ε)k

‖Dαu‖Lq(Ω) ≤ e
C log(h)√

h ‖u‖H(Ω) + C2h
−|α|‖u‖`∞(X ).

For E (k) ≤ C k
Ek

sk , s ≥ 1

‖Dαu‖Lq(Ω) ≤ e
C

h1/(1+s) ‖u‖H(Ω) + C2h
−|α|‖u‖`∞(X ).
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Embedding constants for kernel spaces

Fourier characterization of spaces

NK (Rd) =

{
u ∈ C (Rd) ∩ L2(Rd) : ‖u‖2

NK
=

∫
Rd

|û(ω)|2

|K̂ (ω)|
dω <∞

}

W k
2 (Rd) =

{
u ∈ L2(Rd) :

∫
Rd

|û(ω)|2(1 + ‖ω‖2
2)kdω <∞

}

Finding a specific embedding constant

For a particular kernel function K find E (k) such that

(1 + y)k ≤ E (k)2

K̂ (y)
,

where y = ‖ω‖2
2.
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Embedding constants for kernel spaces contd

Rieger & Zwicknagl [RZ10]

For the Gaussian K̂ (y) = (2ε2)−
d
2 e−

y

4ε2 and

E (k) = C kk
k
2 .

For the inverse multiquadric

K̂ (y) = 21−β

Γ(β)

(√
y
ε

)β
(ε
√
y)−d/2Kd/2−β(

√
y
ε ),

where K is a modified Bessel function of the third kind,
leading to E (k) = C kkk .

Using the embedding constants

We finally assume that there is an extension operator E
such that ‖Eu‖N (Rd ) ≤ ‖u‖N (Ω). Then

‖u‖W k
2 (Ω) ≤ ‖Eu‖W k

2 (Rd ) ≤ E (k)‖Eu‖N (Rd ) ≤ E (k)‖u‖N (Ω)

Wendland [Wen05, Theorem 10.46]
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Implications for interpolation errors

Rieger & Zwicknagl [RZ10]

The interpolant I (u) is zero at the node set X (discrete
term goes away). Together with the optimality property
‖I (u)‖N (Ω) ≤ ‖u‖N (Ω), we get for the Gaussian

‖Dα(I (u)− u)‖Lq(Ω) ≤ e
C log(h)√

h ‖u‖N (Ω),

and for the inverse multiquadric

‖Dα(I (u)− u)‖Lq(Ω) ≤ e
C√
h ‖u‖N (Ω).

These estimates can be improved, e.g., for a compact cube.
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Cost of global method

Global RBF approximations of smooth functions are very
efficent.

A small number of node points per dimension are needed.

However N = 15 in 1-D becomes N = 50 625 in 4-D.

Up to three dimensions can be handled on a laptop, but
not more.

Furthermore, for less smooth functions, the number of
nodes per dimension grows quickly.

For a dense linear system: Direct solution O(N3), storage
O(N2).

⇒ Move to localized methods.

E. Larsson, 2017-09-18 (46 : 77)
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Motivation for RBF-PUM

Global RBF approximation

+ Ease of implementation in any dimension.

+ Flexibility with respect to geometry.

+ Potentially spectral convergence rates.

− Computationally expensive for large problems.

RBF partition of unity methods

I Local RBF approximations on patches are blended
into a global solution using a partition of unity.

I Provides spectral or high-order convergence.

I Solves the computational cost issues.

I Allows for local adaptivity.
[Wen02, Fas07, HL12, Cav12, CDR14, CDR15, CDRP16, CRP16],

[SVHL15, HLRvS16, SL16, LSH17]
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The RBF partition of unity method

Ωj

Global approximation

ũ(x) =
P∑
j=1

wj(x)ũj(x)

PU weight functions

Generate weight functions from
compactly supported C 2 Wendland functions

ψ(ρ) = (4ρ+ 1)(1− ρ)4
+

using Shepard’s method wi (x) = ψi (x)∑M
j=1 ψj (x)

.

Cover
Each x ∈ Ω must be in the interior of at least one Ωj .
Patches that do not contain unique points are pruned.

E. Larsson, 2017-09-18 (48 : 77)
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Differentiating RBF-PUM approximations

0 100 200 300

0

50

100

150

200

250

300

350

nz = 10801

Applying an operator globally

∆ũ =
M∑
i=1

∆wi ũi + 2∇wi · ∇ũi + wi∆ũi

Local differentiation matrices
Let ui be the vector of nodal values in patch Ωi , then

ui = Aλi , where Aij = φj(x i ) ⇒

Lui = ALA−1ui , where ALij = Lφj(x i ).

The global differentiation matrix

Local contributions are added
into the global matrix.
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demo6.m
(Solving a Poisson problem in 2-D with RBF–PUM)
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An RBF-PUM collocation method

Choices & Implications

I Nodes and evaluation points coincide.
Square matrix, iterative solver available (Heryudono, Larsson,

Ramage, von Sydow [HLRvS16]).

I Global node set.
Solutions ũi (xk) = ũj(xk) for xk in overlap regions.

I Patches are cut by the domain boundary.
Potentially strange shapes and lowered local order.

E. Larsson, 2017-09-18 (51 : 77)



RBF–QR
Outline

Global RBFs
RBF limits

Stable methods

Convergence theory

RBF-PUM
Theoretical results
Numerical results

RBF-FD

An RBF-PUM least squares method

Choices & Implications

I Each patch has an identical node layout.
Computational cost for setup is drastically reduced.

I Evaluation nodes are uniform.
Easy to generate both local and global high quality node sets.

I Patches have nodes outside the domain.
Good for local order, but requires denser evaluation points.
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The RBF-PUM interpolation error

Eα = Dα(I (u)− u) =
M∑
j=1

∑
|β|≤|α|

(
α

β

)
DβwjD

α−β(I (uj)− uj)

The weight functions

For C k weight functions and |α| ≤ k

‖Dαwj‖L∞(Ωj ) ≤
Cα

H
|α|
j

, Hj = diam(Ωj).

The local RBF interpolants (Gaussians)

Define the local fill distance hj (Rieger, Zwicknagl [RZ10])

‖Dα(I (uj)− uj)‖L∞(Ω̃j )
≤ cα,jh

mj− d
2
−|α|

j ‖uj‖N (Ω̃j )
,

‖Dα(I (uj)− uj)‖L∞(Ω̃j )
≤ eγα,j log(hj )/

√
hj‖uj‖N (Ω̃j )

.
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RBF-PUM interpolation error estimates

Algebraic estimate for Hj/hj = c

‖Eα‖L∞(Ω) ≤ K max1≤j≤M CjH
mj− d

2
−|α|

j ‖u‖N (Ω̃j )

K — Maximum # of Ωj overlapping at one point
mj — Related to the local # of points
Ω̃j — Ωj ∩ Ω

Spectral estimate for fixed partitions

‖Eα‖L∞(Ω) ≤ K max1≤j≤M Ceγj log(hj )/
√

hj‖u‖N (Ω̃j )

Implications

I Bad patch reduces global order.

I Two refinement modes.

I Guidelines for adaptive refinement.

E. Larsson, 2017-09-18 (54 : 77)



RBF–QR
Outline

Global RBFs
RBF limits

Stable methods

Convergence theory

RBF-PUM
Theoretical results
Numerical results

RBF-FD

Error estimate for PDE approximation

Larsson, Shcherbakov, Heryudono [LSH17]

The PDE estimate
‖ũ − u‖L∞(Ω) ≤ CPEL + CP‖L·,XL+

Y ,X‖∞ (CMδM + EL),

where CP is a well-posedness constant and CMδM is a
small multiple of the machine precision.

Implications

I Interpolation error EL provides convergence rate.

I Norm of inverse/pseudoinverse can be large.

I Matrix norm better with oversampling.

I Finite precision accuracy limit involves matrix norm.

Follows strategies from Schaback [Sch07, Sch16]
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Does RBF-PUM require stable methods?

In order to achieve convergence we have two options

I Refine patches such that diameter H decreases.

I Increase node numbers such that Nj increases.

I In both cases, theory assumes ε fixed.

The effect of patch refinement

H = 1, ε = 4 H = 0.5, ε = 4 H = 0.25, ε = 4

0 H
0

1

0 H
0

1

0 H
0

1

The RBF–QR method: Stable as ε → 0 for N � 1
Effectively a change to a stable basis.
Fornberg, Piret [FP07], Fornberg, Larsson, Flyer [FLF11], Larsson,

Lehto, Heryudono, Fornberg [LLHF13]
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Effects on the local matrices

10
−2

10
−1

10
0

10
−10

10
−5

10
0

ε

N=10 N=20 N=40

Relative error in A∆
j A
−1
j

without RBF-QR

Local contribution to a global Laplacian

Lj = (W∆
j Aj + 2W∇

j � A∇j + WjA
∆
j )A−1

j .

Typically: Aj ill-conditioned, Lj better conditioned.

RBF-QR for accuracy

I Stable for small RBF
shape parameters ε

I Change of basis
Ã = AQR−T1 D−T1

I Same result in theory
ÃLÃ−1 = ALA−1

I More accurate in practice
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Poisson test problems in 2-D

Domain Ω = [−2, 2]2.

Uniform nodes in the collocation case.

uR(x , y) = 1
25x2+25y2+1

uT (x , y) = sin(2(x−0.1)2) cos((x−0.3)2)+sin2((y−0.5)2)
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Error results with and without RBF–QR

I Least squares RBF-PUM

I Fixed shape ε = 0.5 or scaled such that εh = c

I Left: 5× 5 patches Right: 55 points per patch

Spectral mode
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Direct

Scaled

Algebraic mode
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RBF−QR

Direct

Scaled

I With RBF–QR better results for H/h large.

I Scaled approach good until saturation.
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Convergence as a function of patch size

Runge Trig
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Collocation (dashed lines) and Least Squares (solid lines).

I Points per patch n = 28, 55, 91.

I Theoretical rates p = 4, 7, 10.

I Numerical rates p ≈ 3.9, 6.9, 9.8.
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Spectral convergence for fixed patches

Runge Trig
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Collocation (dashed lines) and Least Squares (solid lines).

LS-RBF-PU is significantly more accurate due to the
constant number of nodes per patch.
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Robustness and large scale problems

The global error estimate

‖ũ − u‖L∞(Ω) ≤ CPEL + CP‖L·,XL+
Y ,X‖∞ (CMδM + EL)

The dark horse is the ’stability matrix norm’

I The stability norm is related to conditioning.

I In the collocation case, ‖L−1
X ,X‖ grows with N.

I How does it behave with least squares?
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Stability norm: Patch size

I Fixed number of points per patch n = 28, 55, 91

I Results as a function of patch diameter H

Stability(H) Error(H)
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Collocation (dashed) and LS (solid)

I The norm does not grow for LS-RBF-PUM (!)
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RBF-generated finite differences RBF–FD

Flyer et al. [FW09, FLB+12]

I Approximate Lu(xc)
using the n nearest nodes by

Lu(xc) ≈
n∑

k=1

wku(xk)

I Find weights wk by asking
exactness for RBF-interpolants.


φ1(x1) φ1(x2) · · · φ1(xn)
φ2(x1) φ2(x2) · · · φ2(xn)

...
...

. . .
...

φn(x1) φn(x2) · · · φn(xn)




w1

w2
...
wn

 =


Lφ1(xc)
Lφ2(xc)

...
Lφn(xc)

 .
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Is RBF-QR needed with RBF–FD?
Approximation of ∆u with n = 56. Magenta lines are
with added polynomial terms p = 0, . . . , 3.
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ε = 1.5, direct

ε = 1.5, RBF-QR

ε = 0 (polynomial)

εh= 0.3, direct

I Scaled ε: No ill-conditioning, but
saturation/stagnation. [LLHF13]

I Fixed ε: RBF-QR is needed.

I Added terms: Compromise with partial recovery.
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RBF-FD with PHS and polynomials

Combine polyharmonic splines, e.g, φ(r) = |r |7 with
polynomial terms 1, x , y , . . . , x2, . . . such that the number
of polynomial terms ≈ the number of nodes.

I Contains both smooth and piecewise smooth
components, that have different roles in the
approximation.

I No shape parameter to tune.

I Heuristically, skewed stencils seem to behave well
near boundaries.

Bayona, Flyer, Fornberg, Barnett [FFBB16, BFFB17]
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