
Sequential Monte Carlo methods

Lecture 4 – The bootstrap particle filter

Johan Alenlöv, Uppsala University

2019-08-26

Outline – Lecture 4

Aim: Derive our first sequential Monte Carlo method: the boot-

strap particle filter.

Outline:

1. A (hopefully) intuitive preview

2. The bootstrap particle filter

3. Resampling

4. A toy example and a real world application

1/20

Particle filter preview

A (hopefully) intuitive preview (I/III)

Consider a toy 1D localization problem.

Data Model

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110

Posit ion x

A
lt
it
u
d
e

Dynamics:

Xt+1 = Xt + ut + Vt ,

where Xt denotes position, ut denotes

velocity (known), Vt ∼ N (0, 5) denotes an

unknown disturbance.

Measurements:

Yt = h(Xt) + Et .

where h(·) denotes the world model (here

the terrain height) and Et ∼ N (0, 1)

denotes an unknown disturbance.

Task: Learn about the state Xt (position) based on the

measurements y1:t by computing the filter density p(xt | y1:t).

2/20

A (hopefully) intuitive preview (I/III)

Consider a toy 1D localization problem.

Data Model

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110

Posit ion x

A
lt
it
u
d
e

Dynamics:

Xt+1 = Xt + ut + Vt ,

where Xt denotes position, ut denotes

velocity (known), Vt ∼ N (0, 5) denotes an

unknown disturbance.

Measurements:

Yt = h(Xt) + Et .

where h(·) denotes the world model (here

the terrain height) and Et ∼ N (0, 1)

denotes an unknown disturbance.

Task: Learn about the state Xt (position) based on the

measurements y1:t by computing the filter density p(xt | y1:t). 2/20

A (hopefully) intuitive preview (II/III)

3/20

A (hopefully) intuitive preview (III/III)

Highlights two key capabilities of the PF:

1. Automatically handles an unknown and dynamically changing

number of hypotheses (modes).

2. Works with nonlinear/non-Gaussian models.

4/20

The bootstrap particle filter

Nonlinear filtering problem

Recall that the nonlinear filtering problem amounts to computing

the filter PDF p(xt | y1:t) when the model is given by

Xt+1 | (Xt = xt) ∼ p(xt+1 | xt),
Yt | (Xt = xt) ∼ p(yt | xt),

X0 ∼ p(x0).

We have shown that the solution is

p(xt | y1:t) =
p(yt | xt)p(xt | y1:t−1)

p(yt | y1:t−1)
,

p(xt | y1:t−1) =

∫
p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1.

Basic idea: Try to approximate p(xt | y1:t) sequentially in time

t = 0, 1, . . . using importance sampling!

5/20

Nonlinear filtering problem

Recall that the nonlinear filtering problem amounts to computing

the filter PDF p(xt | y1:t) when the model is given by

Xt+1 | (Xt = xt) ∼ p(xt+1 | xt),
Yt | (Xt = xt) ∼ p(yt | xt),

X0 ∼ p(x0).

We have shown that the solution is

p(xt | y1:t) =
p(yt | xt)p(xt | y1:t−1)

p(yt | y1:t−1)
,

p(xt | y1:t−1) =

∫
p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1.

Basic idea: Try to approximate p(xt | y1:t) sequentially in time

t = 0, 1, . . . using importance sampling!

5/20

Particle filter – representation

The particle filter approximates p(xt | y1:t) by maintaining an

empirical distribution made up of N samples (particles) {x it}Ni=1

and corresponding importance weights {w i
t}Ni=1

p̂N(xt | y1:t)︸ ︷︷ ︸
π̂N(xt)

=
N∑
i=1

w i
tδx it (xt).

The particle filter provides a well-founded way of exploring the

state space using random simulation.

6/20

Importance sampling reminder

Algorithm 1 Importance sampler

1. Sample x i ∼ q(x).

2. Compute the weights w̃ i = π̃(x i)/q(x i).

3. Normalize the weights w i = w̃ i/
∑N

j=1 w̃
j .

Each step is carried out for i = 1, . . . ,N.

7/20

Sampling from the proposal

We sample from the proposal

q(xt | y1:t) =
N∑
i=1

ν it−1q(xt | x it−1, yt)

using a two step procedure:

1. Select one of the components

ait ∼ C({ν jt−1}
N
j=1) (categorical distribution)

2. Generate a sample from the selected component,

x it ∼ q(xt | xa
i
t

t−1, yt)

Repeat this N times, for i = 1, . . . ,N.

8/20

Sampling from the proposal

We sample from the proposal

q(xt | y1:t) =
N∑
i=1

ν it−1q(xt | x it−1, yt)

using a two step procedure:

1. Select one of the components

ait ∼ C({ν jt−1}
N
j=1) (categorical distribution)

2. Generate a sample from the selected component,

x it ∼ q(xt | xa
i
t

t−1, yt)

Repeat this N times, for i = 1, . . . ,N.

8/20

Selecting the mixture components – resampling

The particle x̄ it−1 = x
ait
t−1 is referred to as the ancestor of x it , since

x it is generated conditionally on x̄ it−1.

The variable ait ∈ {1, . . . , N} is referred to as the ancestor index,

since it indexes the ancestor of particle x it at time t − 1.

Sampling the N ancestor indices

ait ∼ C({ν jt−1}
N
j=1), i = 1, . . . , N

is referred to as resampling.

Resampling generates a new set of particles {x̄ it−1}Ni=1 by

sampling with replacement from among {x jt−1}Nj=1, according to

some weights {ν jt−1}Nj=1.

9/20

Selecting the mixture components – resampling

The particle x̄ it−1 = x
ait
t−1 is referred to as the ancestor of x it , since

x it is generated conditionally on x̄ it−1.

The variable ait ∈ {1, . . . , N} is referred to as the ancestor index,

since it indexes the ancestor of particle x it at time t − 1.

Sampling the N ancestor indices

ait ∼ C({ν jt−1}
N
j=1), i = 1, . . . , N

is referred to as resampling.

Resampling generates a new set of particles {x̄ it−1}Ni=1 by

sampling with replacement from among {x jt−1}Nj=1, according to

some weights {ν jt−1}Nj=1.

9/20

Selecting the mixture components – resampling

The particle x̄ it−1 = x
ait
t−1 is referred to as the ancestor of x it , since

x it is generated conditionally on x̄ it−1.

The variable ait ∈ {1, . . . , N} is referred to as the ancestor index,

since it indexes the ancestor of particle x it at time t − 1.

Sampling the N ancestor indices

ait ∼ C({ν jt−1}
N
j=1), i = 1, . . . , N

is referred to as resampling.

Resampling generates a new set of particles {x̄ it−1}Ni=1 by

sampling with replacement from among {x jt−1}Nj=1, according to

some weights {ν jt−1}Nj=1.

9/20

Next step – computing the weights

Algorithm 2 Importance sampler

1. Sample x i ∼ q(x).

2. Compute the weights w̃ i = π̃(x i)/q(x i).

3. Normalize the weights w i = w̃ i/
∑N

j=1 w̃
j .

Each step is carried out for i = 1, . . . ,N.

10/20

Result – A first particle filter

Algorithm 3 Bootstrap particle filter (for i = 1, . . . , N)

1. Initialization (t = 0):

(a) Sample x i0 ∼ p(x0).

(b) Set initial weights: w i
0 = 1/N.

2. for t = 1 to T do

(a) Resample: sample ancestor indices ait ∼ C({w j
t−1}Nj=1).

(b) Propagate: sample x it ∼ p(xt | x
ait
t−1).

(c) Weight: compute w̃ i
t = p(yt | x it) and normalize

w i
t = w̃ i

t/
∑N

j=1 w̃
j
t .

11/20

SMC structure

Same structure for all SMC algorithms.

For the bootstrap PF, given {x it−1,w
i
t−1}Ni=1:

Resampling: ait ∼ C({w j
t−1}Nj=1).

Propagation: x it ∼ p(xt | xa
i
t

t−1).

Weighting: w̃ i
t = p(yt | x it) and normalize.

The result is a new weighted set of particles {x it ,w i
t}Ni=1.

12/20

Weighting Resampling Propagation Weighting Resampling

Intermediate approximations

Approximation of filtering distribution at time t − 1:

N∑
i=1

w i
t−1δx it−1

(xt−1) ≈ p(xt−1 | y1:t−1).

For the bootstrap particle filter:

• After resampling: 1
N

∑N
i=1 δx̄ it−1

(xt−1) ≈ p(xt−1 | y1:t−1).

• After propagation: 1
N

∑N
i=1 δx it (xt) ≈ p(xt | y1:t−1).

• After weighting:
∑N

i=1 w
i
tδx it (xt) ≈ p(xt | y1:t).

13/20

Intermediate approximations

Approximation of filtering distribution at time t − 1:

N∑
i=1

w i
t−1δx it−1

(xt−1) ≈ p(xt−1 | y1:t−1).

For the bootstrap particle filter:

• After resampling: 1
N

∑N
i=1 δx̄ it−1

(xt−1) ≈ p(xt−1 | y1:t−1).

• After propagation: 1
N

∑N
i=1 δx it (xt) ≈ p(xt | y1:t−1).

• After weighting:
∑N

i=1 w
i
tδx it (xt) ≈ p(xt | y1:t).

13/20

Intermediate approximations

Approximation of filtering distribution at time t − 1:

N∑
i=1

w i
t−1δx it−1

(xt−1) ≈ p(xt−1 | y1:t−1).

For the bootstrap particle filter:

• After resampling: 1
N

∑N
i=1 δx̄ it−1

(xt−1) ≈ p(xt−1 | y1:t−1).

• After propagation: 1
N

∑N
i=1 δx it (xt) ≈ p(xt | y1:t−1).

• After weighting:
∑N

i=1 w
i
tδx it (xt) ≈ p(xt | y1:t).

13/20

Examples

An LG-SSM example (I/II)

Whenever you are working on a nonlinear inference method,

always make sure that it solves the linear special case first!

Consider the following LG-SSM (simple 1D positioning example)X pos
t

X vel
t

X acc
t

 =

1 Ts T 2
s /2

0 1 Ts

0 0 1


X pos

t−1

X vel
t−1

X acc
t−1

+

T 3
s /6

T 2
s /2

Ts

Vt , Vt ∼ N (0,Q),

Yt =

(
1 0 0

0 0 1

)X pos
t

X vel
t

X acc
t

+ Et , Et ∼ N (0,R).

The Kalman filter provides the true filtering density, which implies

that we can compare the PF to the truth in this case.

14/20

An LG-SSM example (I/II)

Whenever you are working on a nonlinear inference method,

always make sure that it solves the linear special case first!

Consider the following LG-SSM (simple 1D positioning example)X pos
t

X vel
t

X acc
t

 =

1 Ts T 2
s /2

0 1 Ts

0 0 1


X pos

t−1

X vel
t−1

X acc
t−1

+

T 3
s /6

T 2
s /2

Ts

Vt , Vt ∼ N (0,Q),

Yt =

(
1 0 0

0 0 1

)X pos
t

X vel
t

X acc
t

+ Et , Et ∼ N (0,R).

The Kalman filter provides the true filtering density, which implies

that we can compare the PF to the truth in this case.

14/20

An LG-SSM example (II/II)

0 20 40 60 80 100
0

5

10

Time (s)

|p̂
P
F
−

p̂
K

F
|
(m

)

0 20 40 60 80 100
0

1

2

3

Time (s)

|v̂
K

F
−

v̂
K

F
|
(m

/
s
)

Using 200 particles.

0 20 40 60 80 100
0

5

10

Time (s)

|p̂
P
F
−

p̂
K

F
|
(m

)

0 20 40 60 80 100
0

1

2

3

Time (s)

|v̂
K

F
−

v̂
K

F
|
(m

/
s
)

Using 20 000 particles.

The particle filter estimates converge as the number of particles

tends to infinity (Lecture 5).

15/20

Nonlinear real-world application example

Aim: Compute the position of a person moving around indoors

using sensors (inertial, magnetometer and radio) located in an ID

badge, and a map.

1.5 Xdin 3

(a) A Beebadge, carrying a number
of sensors and a IEEE 802.15.4 radio
chip.

(b) A coordinator, equipped both
with a radio chip and an Ethernet
port, serving as a base station for the
Beebadges.

Figure 1.1. The two main components of the radio network.

Figure 1.2. Beebadge worn by a man.
The sensors (IMU and radio) and

the DSP are mounted inside an ID

badge.

1.5 Xdin 3

(a) A Beebadge, carrying a number
of sensors and a IEEE 802.15.4 radio
chip.

(b) A coordinator, equipped both
with a radio chip and an Ethernet
port, serving as a base station for the
Beebadges.

Figure 1.1. The two main components of the radio network.

Figure 1.2. Beebadge worn by a man.

The inside of the ID badge.

16/20

Application – indoor localization (II/III)

2.5 Map 15

(a) Relative probability density for parts of
Xdin’s o�ce, the bright areas are rooms and
the bright lines are corridors that interconnect
the rooms

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Position [m]

R
e

la
tiv

e
 p

ro
b

a
b

ili
ty

Decay for different n

n=2, m=1
n=3, m=1
n=4, m=1

(b) Cross section of the relative prob-
ability function for a line with di�er-
ent n

Figure 2.7. Probability interpretation of the map.

those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wallj(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

fi =
ÿ

jœW
wallj(pi), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target Ti is a�ected by two walls and another target
Tm, resulting in the force fi.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

“Likelihood model” for an office

environment, the bright areas are

rooms and corridors (i.e., walkable

space).

48 Approach

(a) An estimated trajectory at Xdin’s of-
fice, 1000 particles represented as circles,
size of a circle indicates the weight of the
particle.

(b) A scenario where the filter have not
converged yet. The spread in hypotheses
is caused by a large coverage for a coordi-
nator.

Figure 4.10. Output from the particle filter.

Figure 4.11. Illustration of a problematic case where a correct trajectory (green) is
being starved by an incorrect trajectory (red), causing the filter to potentially diverge.

An estimated trajectory and the

particle cloud visualized at a

particular instance.

17/20

Application – indoor localization (III/III)

Show movie

Johan Kihlberg, Simon Tegelid, Manon Kok and Thomas B. Schön. Map aided

indoor positioning using particle filters. Reglermöte (Swedish Control Conference),

Linköping, Sweden, June 2014.

18/20

Use of random numbers in the particle filter

Random numbers are used to

1. initialize

2. resample and

3. propagate

the particles.

The weighting step does not require any new random numbers, it

is just a function of already existing random numbers.

We can reason about and make use of the joint probability dis-

tribution of these random variables, from which the particle

filter generates one realization each time it is executed.

19/20

A few concepts to summarize lecture 4

Bootstrap particle filter: A particle filter with a specific choice of

proposals. Particles are simulated according to the dynamical

model and weights are assigned according to the measurement

likelihood.

Resampling: The procedure that generates a new set of particles

{x̄ it−1}Ni=1 by sampling with replacement from among {x jt−1}Nj=1,

according to some weights {ν jt−1}Nj=1.

Ancestor indices: Random variable that are used to make the

stochasticity of the resampling step explicit by keeping track of

which particles that get resampled.

20/20

	Particle filter preview
	The bootstrap particle filter
	Examples

	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

