
TOWARDS A SOFTWARE

TRANSACTIONAL MEMORY

FOR GRAPHICS PROCESSORS

Daniel Cederman, Muhammad Tayyab Chaudhry, Philippas Tsigas

Introduction

Software Transactional Memory

 We want to locate an element in a binary balanced tree

 The problem is, some other process is rebalancing it

8

3 12
17

10

15

Software Transactional Memory

STMs provides a construct that guarantees that the

enclosed code will be executed atomically

atomic

{

find position in tree

insert element

rebalance if necessary

}

Software Transactional Memory

 One lock

 No concurrency

 Busy waiting

 Convoying

 Multiple locks

 Better concurrency

 Difficult

 Static analysis

Software Transactional Memory

 Dynamic locks

 Locks are assigned to words, objects, … and are
acquired when data at these locations are read and/or
written to

 Could be acquired directly or at the end of transaction

 In case of conflict - abort

 Keep log of reads/writes

 Keep undo log

 Dynamic locks with helping

 Removes the need for busy waiting

Software Transactional Memory

 Efficiency is an issue

 Might get better with hardware support

 How does it fare on graphics processors?

Graphics Processors

 Many-core

 SIMD Instructions

 Single Instruction Multiple Data

 Small or no cache

 High memory bandwidth

 Thousands of threads

CUDA

 Programming platform for NVIDIA graphics

processors

 C/C++ based language extended to support

executing functions on the graphics processors

instead of CPU

CUDA

 Small processor-local memory

 8-word SIMD instruction

 Coalesced memory access

Multiple memory accesses merged into one larger

 No stack – functions inlined

Implementations

Two STMs

 Blocking STM

 Simpler, and potentially more efficient, if locks are held
only for a very short time

 No recursion needed

 Non-blocking STM

 T. Harris and K. Fraser "Language support for
lightweight transactions", OOPSLA 2003

One transaction will always be successful

 Protected against poor scheduling

 No busy waiting

Differences

 Blocking

 Transactions that fail to acquire a lock are aborted

 Avoids deadlocks

 A set of locks are shared between objects

 Provides a middle ground between having just one lock and
having one for each object

 Non-blocking

 Transactions that fail to acquire a lock can help the other
transaction commit or abort it

 Guarantees that one transaction can make progress

 Each object has its own lock

Common Features

 Object based

 Coalesced reads and writes are encouraged

 Updates are kept local until commit time

 Avoids the problem of handling an inconsistent view of

the memory

 The memory is only locked at commit time

 An optimistic approach. Could delay the time taken to

discover conflicts

Common Features

 Minimal use of processor local memory

 Better left to the main application

 SIMD instruction used where possible

Mostly used to coalesce reads and writes

Experiments

Contention levels

 We performed the experiments using different
contention levels

 One with zero wait time between transactions

 And one with around 500ms of work randomly
distributed between transactions

while(…)

{

wait(rand()%max)

do_operation()

}

Backoff

 Lowers contention by waiting before aborted

transactions are tried again

 Increases the probability that at least one

transaction is successful

 Different types

 None/static

 Linear

 Exponential

Skip-list

 GTX 280 – 30 multiprocessors

 1-60 threads

 Even distribution of inserts/lookups/removes

Skip-List – High Contention

Skip-List – Low Contention

Experiments

 Queue

 Binary Tree

 Hash-map

Results - High Contention

Results - Low Contention

Lock-free Skip-List

Threads

Conclusion

 Software Transactional Memory has attracted the

interest of many researchers over the recent years

 We have tested a blocking and a non-blocking STM

on a graphics processor. This is, to the best of our

knowledge, the first time this has been done

 The performance behavior was comparable to

results from conventional processors

 We now have a basis to build on for further

analysis

For more information:

http://www.cs.chalmers.se/~dcs

Thank you!

