
Highly-Scalable Wait-Free 
Buffering Scheme 

for Multi-Core System Tracing 

Mathieu Desnoyers, Michel Dagenais, 
Polytechnique Montreal

Dominique Toupin
Ericsson

Workshop On Multi-Core Computing, MCC09
November 2009



2 Tracing and monitoring distributed multi-core systems

Summary

● System tracing for Multi-Core
● Tracer architecture
● Synchronization primitives and wait-free 

buffering scheme
● Results
● Discussion



3 Tracing and monitoring distributed multi-core systems

Project Structure

COLLABORATION

Ottawa
University

Ecole
Polytechnique 

Laval
University

Scientific Literature
Linux Community

Eclipse Community
DRDC ERICSSON

Concordia
University

DRDC NSERC ERICSSON



4 Tracing and monitoring distributed multi-core systems

Research Tracks

› Adaptative Fault Probing, Prof. Michel Dagenais, Ecole Polytechnique

› Multi-level, multi-core distributed traces synchronization, Prof. Michel Dagenais and 
Robert Roy, Ecole Polytechnique

› Trace abstraction, analysis and correlation, Prof. Abdelwahab Hamou-Lhadj, Concordia 
University

› Automated fault identification, Prof. Bechir Ktari, Laval University
› Trace directed modeling, Prof. Tim Lethbridge, Ottawa University

› System health monitoring and corrective measure activation, Prof. Michel Dagenais, 
Ecole Polytechnique



5 Tracing and monitoring distributed multi-core systems

System Tracing

● DTrace
● SystemTap
● FTrace
● K42
● LTTng



6 Tracing and monitoring distributed multi-core systems

DTrace

● Part of Sun Solaris since 2005. 
● Static and dynamic tracepoints.
● Dynamically activate tracepoints.
● Execute a script or log an event when a 

tracepoint is encountered.
● Disable interrupts and take a sequence lock for 

logging an event.



7 Tracing and monitoring distributed multi-core systems

SystemTap

● Red Hat released version 1.0 in September 
2009.

● Linux kernel static Tracepoints or dynamic 
Kprobes.

● Dynamically activate probes.
● Execute a script or log an event when a probe 

is encountered.
● Disable interrupts and take a spin lock for 

logging an event.



8 Tracing and monitoring distributed multi-core systems

FTrace

● Developed in the Linux kernel in 2009 from a 
subset of LTTng, plus Function Tracer, plus 
some reimplementation and extensions.

● Linux kernel static Tracepoints or dynamic 
Kprobes.

● Dynamically activate probes.
● Log an event when a probe is encountered.
● Disable interrupts and take per-cpu spinlock for 

logging en event. Evolving to lockless.



9 Tracing and monitoring distributed multi-core systems

K42

● Developed at IBM Research between 1999 and 
2006, highly scalable OS for multi-core, with 
tracer.

● Lockless per-cpu buffering scheme.
● One trace retrieval thread for each CPU to 

simplify synchronization.
● No separation between kernel and processes 

tracing buffers.



10 Tracing and monitoring distributed multi-core systems

LTTng

● Developed at Ecole Polytechnique since 2005, as a 
rewrite of LTT which started in 1999, with the 
collaboration of Ericsson, Fujitsu, Google, IBM, Red 
Hat, Sony, Wind River...

● Linux kernel static Tracepoints or dynamic Kprobes.

● Dynamically activate probes.

● Log an event when a probe is encountered.

● Wait-free buffering scheme suitable even for events in 
NMI context.

● Optimized for high volume, low overhead.



11 Tracing and monitoring distributed multi-core systems



12 Tracing and monitoring distributed multi-core systems

Synchronization primitives

● Writing an event:
● Reserve space by increasing the write count
● Write the data
● Update the commit count

● Synchronization
● Compare and Swap (CAS), atomic increment
● Disable/enable interrupts
● CPU local CAS, atomic increment



13 Tracing and monitoring distributed multi-core systems

Synchronization Performance
Architecture CAS cycles Local CAS Cli + sti

Intel Pentium 4 81 25 131

AMD Athlon 64X2 24 6 23

Intel Core 2 24 8 43

Intel Xeon E5405 24 8 42

PowerPC G5 2 1 4

PowerPC Power6 17 9 16

ARM v7 OMAP3 71 11 45

Itanium 2 3 3 4

UltraSparc IIIi .394 .394 .159



14 Tracing and monitoring distributed multi-core systems

Tracing performance

● Intel Pentium 4, tracing to buffer: 
● DTrace 1180ns
● LTTng 182ns

● Intel Xeon 
● LTTng 119ns



Scalability of TBench Throughput



16 Tracing and monitoring distributed multi-core systems

Discussion

● Supporting NMI contexts requires atomic 
operations.

● Read-Copy Update (RCU) synchronization 
allows wait-free reads of complex structures.

● Per-CPU resources reduce costly global 
memory barriers.

● Any shared resource in contention will severely 
impact scalability at the 64 processors or more 
level.



17 Tracing and monitoring distributed multi-core systems

Availability

● LTTng.org (Ecole Polytechnique de Montreal)
● LTTng: patch for Linux kernel tracing
● LTTV: efficient trace viewer
● Urcu: user-space RCU
● Ust: user-space tracing

● Eclipse.org
● Tracing and Monitoring Framework contributed by 

Ericsson to Linux Tools project


	Slide 1
	Slide 2
	Project Structure
	Research Tracks
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

