Highly-Scalable Wait-Free
Buffering Scheme
for Multi-Core System Tracing

Mathieu Desnoyers, Michel Dagenais,
Polytechnique Montreal

Dominique Toupin
Ericsson

Workshop On Multi-Core Computing, MCCQ09
November 2009



Summary

e System tracing for Multi-Core
e Tracer architecture

e Synchronization primitives and wait-free
buffering scheme

e Results
e Discussion

2 Tracing and monitoring distributed multi-core systems @



Project Structure

“ N

— | ERICSSON

Laval
University

4

University Polytechnique P ordia

University

Scientific Literature
Linux Community ERICSSON
Eclipse Community




Trace

recording

- Multi-core systems

- Low overhead kemel
and userspace fracing
- Online trace monitoring

Heterogenous

Research Tracks

traces
- Cluster nodes
- Virtualization
- Different O5es

Trace directed modeling
Trace / System health monitoring and
Analysis corrective measure activation
Framework ——> Automated fault identification

"""--.ibTrace abstraction, analysis and
J-:;i ipse correlation
Mulli-lewel, multi-core distributed

- Different architectures - Handle traces >10 GB trace synchronization
- Java - Plugin-based
- Merge heterogenous traces

- Control flow views

> Adaptative Fault Probing, Prof. Michel Dagenais, Ecole Polytechnique

> Multi-level, multi-core distributed traces synchronization, Prof. Michel Dagenais and
Robert Roy, Ecole Polytechnique

> Trace abstraction, analysis and correlation, Prof. Abdelwahab Hamou-Lhadj, Concordia

University

> Automated fault identification, Prof. Bechir Ktari, Laval University

> Trace directed modeling, Prof. Tim Lethbridge, Ottawa University
System health monitoring and corrective measure activation, Prof. Michel

Ecole EQl;{’rpr‘hnlm 12

4

Tracing and monitoring distributed multi-core systems




System Tracing

DTrace
SystemTap
FTrace
K42

LTTng

Tracing and monitoring distributed multi-core systems m



DTrace

» Part of Sun Solaris since 2005.
» Static and dynamic tracepoints.
 Dynamically activate tracepoints.

* Execute a script or log an event when a
tracepoint is encountered.

* Disable interrupts and take a sequence lock for
logging an event.

6 Tracing and monitoring distributed multi-core systems m



SystemTap

 Red Hat released version 1.0 in September
2009.

* Linux kernel static Tracepoints or dynamic
Kprobes.

 Dynamically activate probes.

* Execute a script or log an event when a probe
IS encountered.

» Disable interrupts and take a spin lock for
logging an event.

7 Tracing and monitoring distributed multi-core systems m




Developed in the Linux kernel in 2009 from a
subset of LTTng, plus Function Tracer, plus
some reimplementation and extensions.

Linux kernel static Tracepoints or dynamic
Kprobes.

Dynamically activate probes.
Log an event when a probe is encountered.
Disable interrupts and take per-cpu spinlock for

logging en event. Evolving to lockless.
Tracing and monitoring distributed multi-core systems




K42

* Developed at IBM Research between 1999 and
2006, highly scalable OS for multi-core, with
tracer.

» Lockless per-cpu buffering scheme.

 One trace retrieval thread for each CPU to
simplify synchronization.

* No separation between kernel and processes
tracing buffers.

9 Tracing and monitoring distributed multi-core systems m



LT Tng

Developed at Ecole Polytechnique since 2005, as a
rewrite of LTT which started in 1999, with the
collaboration of Ericsson, Fujitsu, Google, IBM, Red
Hat, Sony, Wind River...

Linux kernel static Tracepoints or dynamic Kprobes.
Dynamically activate probes.
Log an event when a probe is encountered.

Walit-free buffering scheme suitable even for events in
NMI context.

Optimized for high volume, low overhead.

10

Tracing and monitoring distributed multi-core systems




LTTng Low-Overhead Tracing Architecture

Host

Trace-control and
data-retrieval socket
using TCF protocol

l

Target cc

++ Application

Tracepoint*

!

st/libust (LGPL)

Shared-Memory Trace- cunl:ml
per-CPU Buffers socket

E

Java Application

ﬂra cepoint*

Java LTTng API
LTTng C adaptor

ust/libust (LGPL)

!

Shared-Memory Tracecontrol

per-CPU Buffers | socket

Erlang Application

Kl'raoepuint*

Frdang LTTng APT
LTTng C adaptor
ust/libust (LGPL)

!

Shared-Memory |lrace-control
per-CPU Buffers socket

r

/ | ust/libustd (LGPL)

- Zero copy

*Tracepoint Characteristics

- Low overhead, no trap. no system call
- Signal, thread and NMI Safe

- Wait-free read-copy update

- Cycle-level time-stamp

- Dynamic activation

- Re-entrant kemel tracing

- Non-blocking atomic operations

- BSD license headers

r'y

Linux
User Space

LTTng Daemon (LGPL)

- Concurrent trace sessions

- Streaming or regular mode for network and local file
- Flight recorder with save-on-demand
- Self-describing binary format highly optimized for mge traces

ust/libustetl (LGPL) | \

ust/libustet] (LGPL)

Shell command
or scripting (GPLv2)

Itt-control/liblttctl

Itt-control/liblttd (LGPL) ltt-control/libl ttct] (LGPL)L_/

|

Trace-control virtual files

Linux Kernel

Debugfs

!

Shared-Memory
per-CPU Buffers TR

LTTng'Ftrace

—

Tracepoint*




Synchronization primitives

* Writing an event:

 Reserve space by increasing the write count
* Write the data
 Update the commit count

* Synchronization

 Compare and Swap (CAS), atomic increment
* Disable/enable interrupts
 CPU local CAS, atomic increment

12

Tracing and monitoring distributed multi-core systems




Synchronization Performance

Tracing and monitoring distributed multi-core systems

7,
.<¢A~

A\



Tracing performance

 |Intel Pentium 4, tracing to buffer:

e DTrace 1180ns
e LTTng 182ns

e |Intel Xeon
 LTTng 119ns

14 Tracing and monitoring distributed multi-core systems




Scalablllty of TBench Throughput

2200
2000 No tracmg I

With tracing — S
1800

1600 |
1400 |
1200 |
1000 |
300 |
600 |
400 +
200 ¥

0

tbench throughput (MB/s)

1 2 3 4 S 6 7 8

Number of cores



Discussion

o Supporting NMI contexts requires atomic
operations.

 Read-Copy Update (RCU) synchronization
allows wait-free reads of complex structures.

* Per-CPU resources reduce costly global
memory barriers.

* Any shared resource in contention will severely
impact scalability at the 64 processors or more

level.
16 Tracing and monitoring distributed multi-core systems



Availability

 LTTng.org (Ecole Polytechnique de Montreal)

 LTTng: patch for Linux kernel tracing
o LTTV: efficient trace viewer

e Urcu: user-space RCU

» Ust: user-space tracing

* Eclipse.org

* Tracing and Monitoring Framework contributed by
Ericsson to Linux Tools project

17 Tracing and monitoring distributed multi-core systems




	Slide 1
	Slide 2
	Project Structure
	Research Tracks
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

