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Summary

e System tracing for Multi-Core
e Tracer architecture

e Synchronization primitives and wait-free
buffering scheme

e Results
e Discussion
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System Tracing

DTrace
SystemTap
FTrace
K42

LTTng
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DTrace

» Part of Sun Solaris since 2005.
» Static and dynamic tracepoints.
 Dynamically activate tracepoints.

* Execute a script or log an event when a
tracepoint is encountered.

* Disable interrupts and take a sequence lock for
logging an event.
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SystemTap

 Red Hat released version 1.0 in September
2009.

* Linux kernel static Tracepoints or dynamic
Kprobes.

 Dynamically activate probes.

* Execute a script or log an event when a probe
IS encountered.

» Disable interrupts and take a spin lock for
logging an event.
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Developed in the Linux kernel in 2009 from a
subset of LTTng, plus Function Tracer, plus
some reimplementation and extensions.

Linux kernel static Tracepoints or dynamic
Kprobes.

Dynamically activate probes.
Log an event when a probe is encountered.
Disable interrupts and take per-cpu spinlock for

logging en event. Evolving to lockless.
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K42

* Developed at IBM Research between 1999 and
2006, highly scalable OS for multi-core, with
tracer.

» Lockless per-cpu buffering scheme.

 One trace retrieval thread for each CPU to
simplify synchronization.

* No separation between kernel and processes
tracing buffers.
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LT Tng

Developed at Ecole Polytechnique since 2005, as a
rewrite of LTT which started in 1999, with the
collaboration of Ericsson, Fujitsu, Google, IBM, Red
Hat, Sony, Wind River...

Linux kernel static Tracepoints or dynamic Kprobes.
Dynamically activate probes.
Log an event when a probe is encountered.

Walit-free buffering scheme suitable even for events in
NMI context.

Optimized for high volume, low overhead.
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LTTng Low-Overhead Tracing Architecture
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Synchronization primitives

* Writing an event:

 Reserve space by increasing the write count
* Write the data
 Update the commit count

* Synchronization

 Compare and Swap (CAS), atomic increment
* Disable/enable interrupts
 CPU local CAS, atomic increment
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Synchronization Performance
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Tracing performance

 |Intel Pentium 4, tracing to buffer:

e DTrace 1180ns
e LTTng 182ns

e |Intel Xeon
 LTTng 119ns
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Scalablllty of TBench Throughput
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Discussion

o Supporting NMI contexts requires atomic
operations.

 Read-Copy Update (RCU) synchronization
allows wait-free reads of complex structures.

* Per-CPU resources reduce costly global
memory barriers.

* Any shared resource in contention will severely
impact scalability at the 64 processors or more

level.
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Availability

 LTTng.org (Ecole Polytechnique de Montreal)

 LTTng: patch for Linux kernel tracing
o LTTV: efficient trace viewer

e Urcu: user-space RCU

» Ust: user-space tracing

* Eclipse.org

* Tracing and Monitoring Framework contributed by
Ericsson to Linux Tools project
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