Optimization Study for Multicores

Muneeb Khan (muneeb.khan@it.uu.se)

Erik Hagersten (eh@it.uu.se)

Department of IT, Uppsala University

Memory Wall

Multicore Performance

 Has extremely bad reputation for high bandwidth demand and low throughput

The Data Model

 Source and Destination data consists of more than 1 Million points in 3D space

Source and Destination datasets are identical

1.34 Million cells in XYZ plane

Each cell consists of 19 properties

205 MB in size

Algorithm

The Problem

 Accesses a huge grid (Array of Structures) almost randomly, with no data reuse

How do we solve it

 Change the way data is accessed i.e Rearrange data (AoS to SoA)

How do we solve it

Change the way data is accessed i.e Rearrange data

Blocking Optimization

Add blocking to improve hardware prefetching

Fetch Ratio Comparison

Miss Ratio Comparison

Utilization Comparison

Relative Throughput

AMD Barcelona 8384

Relative Throughput

Intel Xeon E5345

Parallel Speedup

Intel Xeon E5345

Parallel Speedup

AMD Barcelona 8384

More details in the paper "Optimization study for Multicores"

Interested to see more - have a look at the Master Thesis Report Google "Optimization Study for Multicores"

Questions?