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ArchiDeS

● An application development framework for 
dynamically reconfigurable data-flow systems

● Simple, expressive, efficient
● Major example of target application classes: 

RBS (radio base station) software model
● Separates architecture specification from 

practicalities of running it on multicore hardware
– RBS model(s) are to be understood by experts

– we design different schedulers for  MC hardware

● We believe it can be used for “real” applications!



  

Rationale for a New Model

● Simple (yet expressive)
– simple: few intuitive concepts, separation of aspects

– supplement common industrial practices, like OOP
● use it only where and when necessary 

● “tailored” for multi-core execution
– focus on exploiting available cores

– supporting different, large-scale multi-core chips
● shared memory and message-passing

– support for application-specific scheduling
● that can be optimized for latency, throughput, QoS, ..



  

Concerns and Their Separation

● Specifying application architecture
– applications' functional behaviour

● Deployment
– architecture “(re)adaptation” for particular hardware

● Scheduling on multi-core architectures
– optimizing it for particular multicore hardware and 

execution requirements (throughput, energy, ..)

● Application execution framework
– Run-Time System (RTS)

– independent of the particular hardware platform



  

Types of Parallelism

● Data parallelism
– e.g. multiple clients processed by identical chains 

up to “multiplexing” modules

● Pipeline parallelism
– multi-stage data processing

– different stages working on different units of input 
data simultaneously

● not necessarily with the same time to traverse the pipeline 
for different system users (user-level data streams) etc. 

● Module internal parallelism
– is orthogonal: unsupported but not disallowed either



  

Systems, RTS and
Execution Schedulers

application-aware
scheduling

data in data outRun-Time 
System

Interprets the representation and 
processes the input accordingly it

Execution
Scheduler

Reports modules ready for execution
and requests them for free cores

keeps tracks and assigns modules 
for execution on free cores

first-class representation of subsystems, 
configurations and bindings



  

Data-Flow Software Architectures
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Data-Parallel Execution

● SysArray provides for data-parallel execution
– provided Sys is stateless, thus can be scheduled for 

parallel execution
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Execution Scheduler Interface
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Scheduler Modules on
Individual Processor Cores
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Application Execution on
Multiple Cores
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Related Work

● Component-based programming
– The Fractal component model

● Message-passing languages and systems
– Erlang, ..

● The Actor programming model
● Real-Time Object-Oriented Modeling (ROOM)
● Work-stealing load-balancing
● Scala



  

Conclusions

● A novel message-passing programming 
framework for data-flow software systems

● “lean”, focusing on separation of architecture 
specification, deployment, and execution 
scheduling

● First-class architecture representation is the 
key for application-specific scheduling

● Future work: deployment and execution control 
abstractions, and scheduling policies


