
 1

ArchiDeS
(Architecture, Deployment, Scheduling)

A Programming Framework
for Multicore Chips

Mats Brorsson, Karl-Filip Faxen
and Konstantin Popov

SICS/KMC



  

Software Architectures for
Massive Data-Stream Processing



  

ArchiDeS

● An application development framework for 
dynamically reconfigurable data-flow systems

● Simple, expressive, efficient
● Major example of target application classes: 

RBS (radio base station) software model
● Separates architecture specification from 

practicalities of running it on multicore hardware
– RBS model(s) are to be understood by experts

– we design different schedulers for  MC hardware

● We believe it can be used for “real” applications!



  

Rationale for a New Model

● Simple (yet expressive)
– simple: few intuitive concepts, separation of aspects

– supplement common industrial practices, like OOP
● use it only where and when necessary 

● “tailored” for multi-core execution
– focus on exploiting available cores

– supporting different, large-scale multi-core chips
● shared memory and message-passing

– support for application-specific scheduling
● that can be optimized for latency, throughput, QoS, ..



  

Concerns and Their Separation

● Specifying application architecture
– applications' functional behaviour

● Deployment
– architecture “(re)adaptation” for particular hardware

● Scheduling on multi-core architectures
– optimizing it for particular multicore hardware and 

execution requirements (throughput, energy, ..)

● Application execution framework
– Run-Time System (RTS)

– independent of the particular hardware platform



  

Types of Parallelism

● Data parallelism
– e.g. multiple clients processed by identical chains 

up to “multiplexing” modules

● Pipeline parallelism
– multi-stage data processing

– different stages working on different units of input 
data simultaneously

● not necessarily with the same time to traverse the pipeline 
for different system users (user-level data streams) etc. 

● Module internal parallelism
– is orthogonal: unsupported but not disallowed either



  

Systems, RTS and
Execution Schedulers

application-aware
scheduling

data in data outRun-Time 
System

Interprets the representation and 
processes the input accordingly it

Execution
Scheduler

Reports modules ready for execution
and requests them for free cores

keeps tracks and assigns modules 
for execution on free cores

first-class representation of subsystems, 
configurations and bindings



  

Data-Flow Software Architectures

System

Subsystem

module

m1 m4

in2*

in1

out1*

dataflow I/O interface port  (e.g. passing data buffers)

System

Subsubsystem

module

m1 m4

in2

in1

out1

an interface for
accessing execution  
scheduler

multiplexer
module

Interface port passing multiple data buffers
grouped together  in arrays

demultiplexer
module



  

Data-Parallel Execution

● SysArray provides for data-parallel execution
– provided Sys is stateless, thus can be scheduled for 

parallel execution

multiplexer
module

demultiplexer
module

Sys

A B

ArrayA ArrayB

buf1
buf2
...
bufN

buf1
buf2
...
bufN

buf1 bufN...

Multiple messages with 
individual data buffers
to be scheduled in parallelOne single 

message with 
an array
of data buffers

SysArray



  

Execution Scheduler Interface

RTS Execution
Scheduler

Modules ready for
execution

New
Message

Core
Idle

Module to
Execute

Execution queue



  

Scheduler Modules on
Individual Processor Cores

Execution Scheduler

core#2core#1



  

Application Execution on
Multiple Cores

Execution Scheduler

core#2core#1

Modules currently
being executed



  

Related Work

● Component-based programming
– The Fractal component model

● Message-passing languages and systems
– Erlang, ..

● The Actor programming model
● Real-Time Object-Oriented Modeling (ROOM)
● Work-stealing load-balancing
● Scala



  

Conclusions

● A novel message-passing programming 
framework for data-flow software systems

● “lean”, focusing on separation of architecture 
specification, deployment, and execution 
scheduling

● First-class architecture representation is the 
key for application-specific scheduling

● Future work: deployment and execution control 
abstractions, and scheduling policies


