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S| Parallel (e.g. Multi-threaded)
@ﬁ Software

o Programs consist of many tasks (threads)

GFIT F

o That execute on one or more (logical)
processors
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Critical Sections

o Problem: operations on shared variables

in programming languages are not

atomic.
counter=counter+1; | = Read + Write
; Read 1 + Write 2
faskd a counter=2,
Task 2: Read 1 + Write 2 but should be 3!
o Straightforward solution: Apply mutual exclusion
Task 1: LOCK || Read 1 + Write 2

Task 2:

LOCK

Read 2

Write 3
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Critical Sections +
Scheduling

o Blocking. More advanced and
pessimistic schedulability analysis.

o Deadlocks. Reduced fault-tolerance,
If one task falls, other (even all) might
also fall.

o Priority Inversion. Tasks might not
execute with the proper priority even
though it was set. Deadlines might be
missed.



Critical Sections +
Multiprocessors
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o Reduced Parallelism. Several tasks
with overlapping critical sections will
cause waiting processors to go idle.

Task 1 — T
Task2: —®——&¢—* -0 """~ B
Task3: —=®--------- I S A — &
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E Avoid Critical Sections!

Avoid Blocking. Easier and more optimistic analysis,
l.e. less hardware needed.

Avoid Deadlocks. Increased fault-tolerance as failed
tasks can not affect others to fail.

Avoid Priority Inversion. Easier and more reliable
analysis, and avoids complex and high-overhead
solutions.

Increased Parallelism. Increased overall performance,
more optimistic analysis, I.e. less hardware needed.
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Non-Blocking
Synchronization

o The key lies in how mutual exclusion (i.e.
mutex, semaphore) is implemented in
actual hardware (i.e. processors).

Atomic primitives in hardware can atomically
update one memory word.

o Sophisticated solutions can exploit the
same atomic primitives to support
access to shared resources without
locks, i.e. non-blocking.



ﬁ@% Non-Blocking Algorithms
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o Obstruction-Free.
Guarantees progress in absence of contention.
Need extra module for contention management.

o Lock-Free.

Guarantees that always one operation is making
progress.

Combined with scheduling information, schedulability
analysis can be done.

o Wait-Free.
Guarantees that any operation will finish in a finite time.
Schedulability analysis can be done directly.
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Task Parallelism Library
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Fine-grained parallelism is desired for achieving
maximal speed-up.

Spawning threads is expensive.

Task-based approach:
Dynamically (recursively) spawn tasks.
Each Task contains a relatively small work-load.
Usually just a function call.
Side-effects are (usually) allowed.
A Task Parallelism Library is usually a multi-
threaded program (run-time system) together

with a programming framework.
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Fibonacci Example (Wool)
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#include <stdio.h>
#include <stdlib.h>
#include "wool.h"
(int,fib, int,n)
{
if(n<2) retum n;
else {
int a,b;
(fib,n -2);
a= (fib,n -1);
b= (fib);
retum atb;
}
}
(int, main, int,argc,
char ** argv)
{
printf( "%d \n", (fib, atoi( argv{1]))
}

);
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Light-Weight Task
Management Libraries

o If considering a large number of tasks,
handling costs becomes a bottleneck for
efficiency (e.g. speed-up).

o Core issues:

Data structure in which the tasks are stored.

Strategy for load balancing between workers
(.e. threads)

Synchronization for moving tasks between
workers and corresponding data structures
In order to realize load balancing strategy.
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o Task objects stored in a “deque” (local
Push/Pop, thieves Pop) data structure.

BESE S S A A A
nop 1

<:|Pop
Allowing side-effects:

Arora et al. “Thread scheduling for multiprogrammed
multiprocessors”. 1998.

Chase and Lev. “Dynamic circular work-stealing
deque”. 2005.

o Disallowing side-effects:
13 Michael et al. "ldempotent work stealing”. 20009.
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The Wool Library (v.0.1.1)

o Karl-Filip Faxen, "Wool — A work
stealing library”, MCC 2008.

o Really light-weight.
Simplified framework.

o Efficient synchronization

Tasks and "deque” data structure is
the same ("collapsed layers™).
Un-even synchronization

y Optimizes for the average case.
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Wool: Architecture

o Each worker has a large array of Tasks.

o Each Task includes stealing/availability
status.

Sl B B S 5§ S S B
LT T T T T T]T|T

ﬁ T L Lock

Push / Pop
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Modified Task data structure

o Thieves synchronize through lock.

o Thief and owner synchronize through
both £f and balarm. . Thief

i 4

balarm

Tl

Owner Owner
16
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Wool: Stealers
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1 bool steal( *victim )
2 {

3 lock( victim->Ick );

4 *t = victim->bot;
5 t->balarm = ;
6 memory_barrier();

7 if(t->f== ) {
8 unlock( victim->Ick );
9 t->balarm = ;
10 return false;

11  }else{

12 victim->bot++;

13 unlock( victim->Ick )
14 ... Il Run the task

15 memory_barrier();
16 t->balarm = ;
17 return true;

18 }

19 }
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Wool: Task owners
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21 void sync( *1)

22 {

23 t->f= ;

24  memory_barrier();

25 if( t->balarm != ) {

26 /' Wait for thief to fully decide
27 lock( self->Ick );

28 if( t->balarm == ) {
29 unlock( self->Ick);

30 ... Il Run the task

31 } else {

32 unlock( self->Ick );

33 ... [l Walit for thief to finish
34 self->bot--;

35 }

36 }

37 }
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Lock-Free Approach:
Atomic Primitives

void FAA( int volatile *address, int number ) atomically do {
*address = *address + number;
}
/l
bool CAS( int volatile *address, int oldvalue, int newvalue ) atomically do {
if( *address == oldvalue ) {
*address = newvalue;
return true;
}
10 else return false;
11 }
12 /1
13 bool DWCAS( int volatile *address, int oldvaluel, int oldvalue2, int
newvaluel, int newvalue2) atomically do {
14  if( address[0] == oldvaluel && address[1] == oldvalue2 ) {
15 address[0] = newvaluel,;
16 address[1] = newvaluez;

© 00 N O O~ WN P

17 return true;

18 }

19 else return false;
20 }

19



Modified Task data structure
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o Place both £ and balarm Into same
double-word.

Thieves

!
ﬁll

Owner Owner
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Lock-Free Wool

1 bool steal( *victim )

2 {

3 *t = victim->bot;

4  f=t->f

5 if(fl= && DWCAS( &t->f, f, , 1,
6 FAA( &victim->bot, 1);

7 ... Il Run the task

8 memory_barrier();

9 t->balarm = ;

10 return true;

11}

12 else return false;

13 }

14

15 void sync( *t)

16 {

17 t->f= ;

18  memory_barrier();

19 if( t->balarm == ) {
20 ... /I Run the task

21}

22 else{

23 ... [l Wait for thief to finish
24 FAA( &self->bot, -1);

25 }

26 }

21
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Experiments:
Quicksort using shared memory
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Experiments:

Matrix multiplication using “parallel for”

Execution Time (ms)
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Conclusions

o

o

o
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Although Wool was highly optimized, adding
Lock-Free synchronization could improve
(absolute) performance.

"Un-even” synchronization is an interesting
technique for optimizing the average case.

Task "size” is significant for performance.

"parallel for” is especially sensitive for task size, due
to relatively high overhead.
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Questions?

Thank You for listening!

WWW.pPSS-ab.com

www.adm.hb.se/~hsu

www.cse.chalmers.se/~tsigas
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