»& Distributed Computing and Systems
¥/ 4 Chalmers university of technology
R P

ﬂ“«\

Brushing the Locks out of the Fur:

A Lock-Free Work Stealing
Library Based on Wool

Hakan Sundell

University College of Boras
Sl Al L= Parallel Scalable Solutions AB

Philippas Tsigas

Chalmers University of Technology

VSIRN
Y%L

Outline

o

o

Synchronization of Shared Data

Task Parallelism Library
Light-Weight
Previous Work

The Wool Library

Architecture
Synchronization

Wool with Lock-Free Synchronization
Experiments
Conclusions

S| Parallel (e.g. Multi-threaded)
@ﬁ Software

o Programs consist of many tasks (threads)

GFIT F

o That execute on one or more (logical)
processors

B T e B

3

BD
S
Y

Critical Sections

o Problem: operations on shared variables

in programming languages are not

atomic.
counter=counter+1; | = Read + Write
; Read 1 + Write 2
faskd a counter=2,
Task 2: Read 1 + Write 2 but should be 3!
o Straightforward solution: Apply mutual exclusion
Task 1: LOCK || Read 1 + Write 2

Task 2:

LOCK

Read 2

Write 3

VSIRN
Y%L

Critical Sections +
Scheduling

o Blocking. More advanced and
pessimistic schedulability analysis.

o Deadlocks. Reduced fault-tolerance,
If one task falls, other (even all) might
also fall.

o Priority Inversion. Tasks might not
execute with the proper priority even
though it was set. Deadlines might be
missed.

Critical Sections +
Multiprocessors

S
Y

o Reduced Parallelism. Several tasks
with overlapping critical sections will
cause waiting processors to go idle.

Task 1 — T
Task2: —®——&¢—* -0 """~ B
Task3: —=®--------- I S A — &
Task 4: =——®---""----"---- T B

VSIRN

E Avoid Critical Sections!

Avoid Blocking. Easier and more optimistic analysis,
l.e. less hardware needed.

Avoid Deadlocks. Increased fault-tolerance as failed
tasks can not affect others to fail.

Avoid Priority Inversion. Easier and more reliable
analysis, and avoids complex and high-overhead
solutions.

Increased Parallelism. Increased overall performance,
more optimistic analysis, I.e. less hardware needed.

VSIRN
Y%L

Non-Blocking
Synchronization

o The key lies in how mutual exclusion (i.e.
mutex, semaphore) is implemented in
actual hardware (i.e. processors).

Atomic primitives in hardware can atomically
update one memory word.

o Sophisticated solutions can exploit the
same atomic primitives to support
access to shared resources without
locks, i.e. non-blocking.

ﬁ@% Non-Blocking Algorithms
" g Alg

o Obstruction-Free.
Guarantees progress in absence of contention.
Need extra module for contention management.

o Lock-Free.

Guarantees that always one operation is making
progress.

Combined with scheduling information, schedulability
analysis can be done.

o Wait-Free.
Guarantees that any operation will finish in a finite time.
Schedulability analysis can be done directly.

9

VSIRN
Y%L

Task Parallelism Library

10

Fine-grained parallelism is desired for achieving
maximal speed-up.

Spawning threads is expensive.

Task-based approach:
Dynamically (recursively) spawn tasks.
Each Task contains a relatively small work-load.
Usually just a function call.
Side-effects are (usually) allowed.
A Task Parallelism Library is usually a multi-
threaded program (run-time system) together

with a programming framework.

VSIRN

Y%L

Fibonacci Example (Wool)

11

1
2
3
4
5
6
7
8

9

10
11
12
13
14

15
16

17
18
19
20
21

#include <stdio.h>
#include <stdlib.h>
#include "wool.h"
(int,fib, int,n)
{
if(n<2) retum n;
else {
int a,b;
(fib,n -2);
a= (fib,n -1);
b= (fib);
retum atb;
}
}
(int, main, int,argc,
char ** argv)
{
printf("%d \n", (fib, atoi(argv{1]))
}

);

VSIRN
Y%L

Light-Weight Task
Management Libraries

o If considering a large number of tasks,
handling costs becomes a bottleneck for
efficiency (e.g. speed-up).

o Core issues:

Data structure in which the tasks are stored.

Strategy for load balancing between workers
(.e. threads)

Synchronization for moving tasks between
workers and corresponding data structures
In order to realize load balancing strategy.

12

Work-Stealing "Deques’

Y%L

Siz

o Task objects stored in a “deque” (local
Push/Pop, thieves Pop) data structure.

BESE S S A A A
nop 1

<:|Pop
Allowing side-effects:

Arora et al. “Thread scheduling for multiprogrammed
multiprocessors”. 1998.

Chase and Lev. “Dynamic circular work-stealing
deque”. 2005.

o Disallowing side-effects:
13 Michael et al. "ldempotent work stealing”. 20009.

D
v
Y

The Wool Library (v.0.1.1)

o Karl-Filip Faxen, "Wool — A work
stealing library”, MCC 2008.

o Really light-weight.
Simplified framework.

o Efficient synchronization

Tasks and "deque” data structure is
the same ("collapsed layers™).
Un-even synchronization

y Optimizes for the average case.

D
v

Y%L

Wool: Architecture

o Each worker has a large array of Tasks.

o Each Task includes stealing/availability
status.

Sl B B S 5§ S S B
LT T T T T T]T|T

ﬁ T L Lock

Push / Pop

15

VSIRN
Y%L

Modified Task data structure

o Thieves synchronize through lock.

o Thief and owner synchronize through
both £f and balarm. . Thief

i 4

balarm

Tl

Owner Owner
16

VSIRN

Y%L

Wool: Stealers

17

1 bool steal(*victim)
2 {

3 lock(victim->Ick);

4 *t = victim->bot;
5 t->balarm = ;
6 memory_barrier();

7 if(t->f==) {
8 unlock(victim->Ick);
9 t->balarm = ;
10 return false;

11 }else{

12 victim->bot++;

13 unlock(victim->Ick)
14 ... Il Run the task

15 memory_barrier();
16 t->balarm = ;
17 return true;

18 }

19 }

VSIRN

Y%L

Wool: Task owners

18

21 void sync(*1)

22 {

23 t->f= ;

24 memory_barrier();

25 if(t->balarm !=) {

26 /' Wait for thief to fully decide
27 lock(self->Ick);

28 if(t->balarm ==) {
29 unlock(self->Ick);

30 ... Il Run the task

31 } else {

32 unlock(self->Ick);

33 ... [l Walit for thief to finish
34 self->bot--;

35 }

36 }

37 }

VSIRN

Y%L

Lock-Free Approach:
Atomic Primitives

void FAA(int volatile *address, int number) atomically do {
*address = *address + number;
}
/l
bool CAS(int volatile *address, int oldvalue, int newvalue) atomically do {
if(*address == oldvalue) {
*address = newvalue;
return true;
}
10 else return false;
11 }
12 /1
13 bool DWCAS(int volatile *address, int oldvaluel, int oldvalue2, int
newvaluel, int newvalue2) atomically do {
14 if(address[0] == oldvaluel && address[1] == oldvalue2) {
15 address[0] = newvaluel,;
16 address[1] = newvaluez;

© 00 N O O~ WN P

17 return true;

18 }

19 else return false;
20 }

19

Modified Task data structure

S
Y

o Place both £ and balarm Into same
double-word.

Thieves

!
ﬁll

Owner Owner

20

VSIRN

Y%L

Lock-Free Wool

1 bool steal(*victim)

2 {

3 *t = victim->bot;

4 f=t->f

5 if(fl= && DWCAS(&t->f, f, , 1,
6 FAA(&victim->bot, 1);

7 ... Il Run the task

8 memory_barrier();

9 t->balarm = ;

10 return true;

11}

12 else return false;

13 }

14

15 void sync(*t)

16 {

17 t->f= ;

18 memory_barrier();

19 if(t->balarm ==) {
20 ... /I Run the task

21}

22 else{

23 ... [l Wait for thief to finish
24 FAA(&self->bot, -1);

25 }

26 }

21

A

VSIRN
Y%L

EXp

12000

eriments (Intel core 17):
Fibonacci, fully expanded spawn-tree

Fib 45 — Intel Core i7

11000 |
10000
9000
8000
7000
6000
2000
4000
3000

Execution Time (ms)

T
LOCK-FREE—
L ORIGINAL

2000

22

VSIRN
Y%L

Experiments:
Quicksort using shared memory

QS 10000000 — Intel Core i7
1300

I
LOCK-FREE—+
1200 'T.—_;_-.!__:JR|G|NAL X |

1100 |\, i
1000 | "'-32.:;::_:;.._ _
900 | ."":3.:;::_::._ |
soo L\ _
700 |- i

Execution time (ms)

600 \:"1‘:\';:..‘ -
500 | ”*azxzﬁ:-_-_ ;k_
400 I R

23

VSIRN
Y%L

Experiments:

Matrix multiplication using “parallel for”

Execution Time (ms)

24

2200
2000
1800
1600
1400
1200
1000
800
600
400
200

MM4 500 5 — Intel Core i7

| | | |
LOCK-FREE——

 ORIGINAL —<—

i . -
bl
L P
&
A
| — z/{/
f/ /

| -

K/

K

| | | |
1 i 3 4 5
Threads

VSIRN
Y%L

Conclusions

o

o

o

25

Although Wool was highly optimized, adding
Lock-Free synchronization could improve
(absolute) performance.

"Un-even” synchronization is an interesting
technique for optimizing the average case.

Task "size” is significant for performance.

"parallel for” is especially sensitive for task size, due
to relatively high overhead.

VSIRN
2R\

Questions?

Thank You for listening!

WWW.pPSS-ab.com

www.adm.hb.se/~hsu

www.cse.chalmers.se/~tsigas

26

http://www.pss-ab.com/
http://www.pss-ab.com/
http://www.pss-ab.com/
http://www.adm.hb.se/~hsu
http://www.cse.chalmers.se/~tsigas

