
Brushing the Locks out of the Fur:

A Lock-Free Work Stealing

Library Based on Wool

Håkan Sundell
University College of Borås

Parallel Scalable Solutions AB

Philippas Tsigas
Chalmers University of Technology

2

Outline

 Synchronization of Shared Data

 Task Parallelism Library

 Light-Weight

 Previous Work

 The Wool Library

 Architecture

 Synchronization

 Wool with Lock-Free Synchronization

 Experiments

 Conclusions

3

Parallel (e.g. Multi-threaded)

Software

 Programs consist of many tasks (threads)

 That execute on one or more (logical)

processors

4

Critical Sections

 Problem: operations on shared variables
in programming languages are not
atomic.

 Straightforward solution: Apply mutual exclusion

counter=counter+1; Read + Write=

Read 1 +

+ Write 2

Write 2Task 1:

Task 2: Read 1

counter=2,

but should be 3!

Read 1 +

+ Write 3

Write 2Task 1:

Task 2: Read 2

LOCK

LOCK

!

5

Critical Sections +

Scheduling

 Blocking. More advanced and

pessimistic schedulability analysis.

 Deadlocks. Reduced fault-tolerance,

if one task fails, other (even all) might

also fail.

 Priority Inversion. Tasks might not

execute with the proper priority even

though it was set. Deadlines might be

missed.

6

Critical Sections +

Multiprocessors

 Reduced Parallelism. Several tasks

with overlapping critical sections will

cause waiting processors to go idle.

Task 1:

Task 2:

Task 3:

Task 4:

7

Avoid Critical Sections!

 Avoid Blocking. Easier and more optimistic analysis,
i.e. less hardware needed.

 Avoid Deadlocks. Increased fault-tolerance as failed
tasks can not affect others to fail.

 Avoid Priority Inversion. Easier and more reliable
analysis, and avoids complex and high-overhead
solutions.

 Increased Parallelism. Increased overall performance,
more optimistic analysis, i.e. less hardware needed.

8

Non-Blocking

Synchronization

 The key lies in how mutual exclusion (i.e.

mutex, semaphore) is implemented in

actual hardware (i.e. processors).

 Atomic primitives in hardware can atomically

update one memory word.

 Sophisticated solutions can exploit the

same atomic primitives to support

access to shared resources without

locks, i.e. non-blocking.

9

Non-Blocking Algorithms

 Obstruction-Free.
 Guarantees progress in absence of contention.

 Need extra module for contention management.

 Lock-Free.
 Guarantees that always one operation is making

progress.

 Combined with scheduling information, schedulability
analysis can be done.

 Wait-Free.
 Guarantees that any operation will finish in a finite time.

 Schedulability analysis can be done directly.

Task Parallelism Library

 Fine-grained parallelism is desired for achieving

maximal speed-up.

 Spawning threads is expensive.

 Task-based approach:

 Dynamically (recursively) spawn tasks.

 Each Task contains a relatively small work-load.

• Usually just a function call.

• Side-effects are (usually) allowed.

 A Task Parallelism Library is usually a multi-

threaded program (run-time system) together

with a programming framework.
10

Fibonacci Example (Wool)

11

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "wool.h"
4

5 TASK_1 (int , fib, int , n)
6 {
7 if(n<2) return n;
8 else {
9 int a,b;
10 SPAWN (fib, n -2);
11 a = CALL (fib, n -1);
12 b = SYNC (fib);
13 return a+b;
14 }
15 }
16

17 TASK_2 (int , main, int , argc,
18 char **, argv)
19 {
20 printf("%d \n", CALL (fib, atoi(argv[1])));
21 }

Light-Weight Task

Management Libraries

 If considering a large number of tasks,

handling costs becomes a bottleneck for

efficiency (e.g. speed-up).

 Core issues:

 Data structure in which the tasks are stored.

 Strategy for load balancing between workers

(i.e. threads)

 Synchronization for moving tasks between

workers and corresponding data structures

in order to realize load balancing strategy.

12

Work-Stealing ”Deques”

 Task objects stored in a “deque” (local

Push/Pop, thieves Pop) data structure.

 Allowing side-effects:

 Arora et al. “Thread scheduling for multiprogrammed

multiprocessors”. 1998.

 …

 Chase and Lev. “Dynamic circular work-stealing

deque”. 2005.

 Disallowing side-effects:

 Michael et al. ”Idempotent work stealing”. 2009.13

T T T T T T T
Push

Pop

Pop
Pop

Pop

The Wool Library (v.0.1.1)

 Karl-Filip Faxén, ”Wool – A work

stealing library”, MCC 2008.

 Really light-weight.

 Simplified framework.

 Efficient synchronization

 Tasks and ”deque” data structure is

the same (”collapsed layers”).

 Un-even synchronization

• Optimizes for the average case.
14

Wool: Architecture

 Each worker has a large array of Tasks.

 Each Task includes stealing/availability

status.

15

T T T T T T T

Push / Pop

Pop

T T T

SS S S SS S S SS

Pop
Pop

…
L Lock

Modified Task data structure

 Thieves synchronize through lock.

 Thief and owner synchronize through
both f and balarm.

16

f

Thief

Owner Owner

balarm

Thief

Wool: Stealers

17

1 bool steal(Worker *victim)
2 {
3 lock(victim->lck);
4 Task *t = victim->bot;
5 t->balarm = STOLEN;
6 memory_barrier();
7 if(t->f == INLINED) {
8 unlock(victim->lck);
9 t->balarm = READY;
10 return false;
11 } else {
12 victim->bot++;
13 unlock(victim->lck)
14 ... // Run the task
15 memory_barrier();
16 t->balarm = DONE;
17 return true;
18 }
19 }

Wool: Task owners

18

21 void sync(Task *t)
22 {
23 t->f = INLINED;
24 memory_barrier();
25 if(t->balarm != READY) {
26 // Wait for thief to fully decide
27 lock(self->lck);
28 if(t->balarm == READY) {
29 unlock(self->lck);
30 ... // Run the task
31 } else {
32 unlock(self->lck);
33 ... // Wait for thief to finish
34 self->bot--;
35 }
36 }
37 }

Lock-Free Approach:

Atomic Primitives

19

1 void FAA(int volatile *address, int number) atomically do {
2 *address = *address + number;
3 }
4 //
5 bool CAS(int volatile *address, int oldvalue, int newvalue) atomically do {
6 if(*address == oldvalue) {
7 *address = newvalue;
8 return true;
9 }
10 else return false;
11 }
12 //
13 bool DWCAS(int volatile *address, int oldvalue1, int oldvalue2, int
newvalue1, int newvalue2) atomically do {
14 if(address[0] == oldvalue1 && address[1] == oldvalue2) {
15 address[0] = newvalue1;
16 address[1] = newvalue2;
17 return true;
18 }
19 else return false;
20 }

Modified Task data structure

 Place both f and balarm into same

double-word.

20

f

Thieves

Owner Owner

balarm

Lock-Free Wool

21

1 bool steal(Worker *victim)
2 {
3 Task *t = victim->bot;
4 f = t->f;
5 if(f != INLINED && DWCAS(&t->f, f, READY, f, STOLEN)) {
6 FAA(&victim->bot, 1);
7 ... // Run the task
8 memory_barrier();
9 t->balarm = DONE;
10 return true;
11 }
12 else return false;
13 }
14

15 void sync(Task *t)
16 {
17 t->f = INLINED;
18 memory_barrier();
19 if(t->balarm == READY) {
20 ... // Run the task
21 }
22 else {
23 ... // Wait for thief to finish
24 FAA(&self->bot, -1);
25 }
26 }

Experiments (Intel core i7):
Fibonacci, fully expanded spawn-tree

22

Experiments:
Quicksort using shared memory

23

Experiments:
Matrix multiplication using ”parallel for”

24

Conclusions

 Although Wool was highly optimized, adding

Lock-Free synchronization could improve

(absolute) performance.

 ”Un-even” synchronization is an interesting

technique for optimizing the average case.

 Task ”size” is significant for performance.

 ”parallel for” is especially sensitive for task size, due

to relatively high overhead.

25

26

Questions?

Thank You for listening!

www.pss-ab.com

www.adm.hb.se/~hsu

www.cse.chalmers.se/~tsigas

http://www.pss-ab.com/
http://www.pss-ab.com/
http://www.pss-ab.com/
http://www.adm.hb.se/~hsu
http://www.cse.chalmers.se/~tsigas

