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What has Multicore Meant for Us?

As a software development organization, multicore has impacted 
Virtutech in several ways

‒ How we build our product

‒ How our customers use our product

‒ The nature of the products our customers build

‒ How our customers build their own products (using our product)
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WHERE DO WE COME FROM?
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Our Product: Virtual Platforms for System Development
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Virtual Platform
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Virtual platform == software

Running on a regular PC, server, 
or workstation

Functionally identical to the 
target hardware

Runs the same software as the 
physical hardware system

Purpose: to help customers 
developed systems better
‒ In particular software at all levels



Virtutech Core Technology

The Simics product

Complete target simulation
‒ Run OS, drivers, all other software

Very fast simulation 

Models any computer system
‒ Processor, SoCs, FPGA, ASICs
‒ Networks, multiple boards/machines
‒ Multicore processors

Targets:
‒ Single-core aerospace systems
‒ ... To multicore network processors
‒ ... To massive multiprocessor servers
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SimicsSimics

User application code

Host hardwareHost hardware

Host operating systemHost operating system

Virtual target hardware

Target operating system (s)

Middleware and libraries

Typically, an embedded 
or real‐time control 
computer system
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DOES ANYONE CARE ABOUT
MULTICORE, ANYWAY?
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Stackoverflow.com: Multicore tag
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Stackoverflow.com: Some other Tags

Tag Posts
Multicore 116
Multithreading 2568
Boost (C++ library) 530
C++ 13991
C# 39808
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Öredev 2009: the 
Premier programming 
conference in 
Scandinavia

Multicore/parallel 
programming is in the 
program – but not 
under any obvious 
heading

Øredev 2009: Meanwhile, Multicore
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Embedded Software
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Embedded Hardware
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Multicore is having a Huge Impact in Embedded

(Control-Plane) Chips going multicore at a rapid pace
‒ Across all architectures and markets, Power Architecture, MIPS, ARM, x86, …
‒ Not just in data plane, much more important and painful in the control plane

Software
‒ All players moving to support multicore

Embedded systems very exposed to the nature of the hardware
‒ Design particular hardware, integrated software/hardware solutions

Typical IT programming less exposed to hardware
‒ On top of a LAMP stack, SQL database, .net engine, JVM, do not see multicore: 

it is hidden inside the middleware layers
‒ Most applications either trivially parallel (servers) or not performance sensitive
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Our Customers do Care about Multicore

Servers
• IBM,  (Sun), ... 
• Multiprocessor, multicore, multithreading 

standard since 1990s
• Always doing SMP systems and software
• Multicore just piles on the cores faster

Infrastructure
• Ericsson, Cisco, ...
• Massive distributed, heterogeneous, 

networked, multi-board, multi-processor 
systems

• Adopting multicore everywhere in their 
system

• Parallelizing software, maintaining legacy, 
getting suppliers up to speed with multicore 
tools and software kits

Semiconductors
• Freescale, IBM, ... 
• Have to build multicore chips to stay 

competitive
• Get multicore-aware software stacks in place 

to make multicore chips sellable
• Develop ecosystem of programming tools, 

operating systems, applications, frameworks, 
APIs

Military & Aerospace
• Boeing, BAE, NASA, Wind River, 

Lockheed-Martin, Honeywell, ... 
• Still on single-processor single-core boards
• Scared of multicore, just like they were 

scared of caches
• Dislike all things being hidden inside an SoC
• Know they cannot avoid multicore in order to 

get next-generation performance
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MULTICORE IMPACT ON VIRTUTECH
CUSTOMERS AND SIMICS USERS
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Multicore Changed Things 

Customer demand and 
requirements
‒ The types of hardware and software 

systems Simics is used for 
‒ The required performance of the 

simulator
‒ The required features of the 

simulator

Our technology
‒ Simulating multicore
‒ Features for multicore
‒ Performance tuning of Simics
‒ Multithreading the simulator
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Simics-customer Systems in the Multicore Era

Baseline processor is now a multicore SoC with shared memory
‒ Used to be a single processor until 2005

Growth in the use and availability of hardware accelerators
‒ Crypto, security, pattern matching, network protocols, signal processing, …
‒ Accelerators make up 50% of the chip area in recent Cavium, Freescale chips

Massive DSP and NP farms
‒ Hundreds of DSPs and NPs are common in network processing

Software is the main value carrier
‒ 80% or more of system value added by software

Mostly standard parts
‒ Off-the-shelf multicore SoCs, with some application-specific FPGAs or ASICs

Software defines the system and glues it together
‒ Coordination between cores, chips, boards, racks, network nodes, ... 

2009-11-2616 MCC 2009 (Copyright 2009 Virtutech)



Software Setup Example from Freescale

Hypervisor runs the system
‒ Hardware devices allocated to partitions by hypervisor
‒ Some virtual hardware devices introduced by hypervisor

Several static partitions, corresponding to what used to be separate chips or 
boards

Source: Freescale Multicore Introduction, see http://jakob.engbloms.se/archives/877
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Software Porting Pain

Operating systems has to go multicore
‒ Shared-memory symmetric MP (SMP) necessary to handle control-plane
‒ Local-memory asymmetric MP (AMP) typically also supported
‒ Hypervisors coming in to manage the complexity
‒ Enea OSE, Wind River VxWorks the two big transitions we have seen

Target software has to go parallel
‒ Old code tends not to work out of the box
‒ Multithreaded programs ≠ multicore programs
‒ Classic embedded programming uses locks and priorities, does not port well
‒ Find strategies to reuse existing code in compartments

Performance an ongoing exercise
‒ 1 core to 2 cores – just go parallel at all
‒ 2 cores to 3 cores – breaks things that assumed ”me or the other core”
‒ 8 cores – need to rethink parallelism and work division
‒ 20 cores – another rethink, remove any vestiges of global synchronization
‒ 100 cores – yet another rethink and redesign
‒ ... Just keep going ... 

Yes... I know that using Erlang, MDA, Matlab, MPI, DSL, all help

2009-11-2619 MCC 2009 (Copyright 2009 Virtutech)



Debugging Pain

Parallel software systems are 
non-deterministic and chaotic
‒ Very small timing disturbances can 

lead to totally different system 
execution

‒ Less stability
‒ Heisenbugs are common

Traditional rerun-to-repeat 
debugging is typically 
impossible

Increased stress on old software
‒ Running software truly concurrently 

exposes latent bugs
‒ Bugs revealed by changes to OS 

scheduler or compiler libraries

Less insight into the system
‒ Single debug port on a chip hides 

many cores, buses, caches
‒ (Getting better now, finally)

Hard to look at part of a running 
system without killing it
‒ Stopping one core, leave others 

running, for example
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VIRTUTECH SIMICS AND MULTICORE
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What do Developers do with Simics

Software development
‒ Operating systems
‒ Middleware
‒ Applications
‒ Distributed applications

Testing
‒ Software integration
‒ Fault tolerance and reconfiguration
‒ Hardware in the loop

System architecture
‒ Function partitioning, processor placement, selection, memory sizes

Computer architecture
‒ Especially in academic settings

In almost all cases, speed of simulation is crucial to Simics value
‒ Strong culture of making Simics go fast, very fast
‒ We are talking 1000 of MHz or MIPS, slowdown on real code around 5 observed

Speed, I am Speed, …
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Simulation Helps with Multicore Systems Development

Multicore a shift that helps 
introduce new technology
‒ Gain for Simics, as we solve 

customer pain in a unique way

Simics Value to OEMs
‒ No more man-year bugs
‒ Hardware independence

Offer an execution environment 
‒ Repeatable
‒ Reversible
‒ Encapsulate systems, with global 

stop
‒ Debug and trace anything
‒ Configurable and variable
‒ Arbitrarily scalable

On hardware, only some 
runs reproduce an error

On virtual hardware, 
debugging is much easier
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Multicore Simulation in Simics

Multicore identical to multiprocessors & multiboard
‒ Several active processors in the system
‒ Packaging not relevant at the level that Simics operates
‒ Simics multi-processor from the start, thanks to Sun in 1998

Multiple tightly-coupled processors (typically, sharing memory) 
simulated using round robin scheduling
‒ Simulator sets the semantics of the simulation, independent of host

Temporal decoupling for performance
‒ Run each CPU for a  time slice before switching to next

Idle-time and idle-loop hypersimulation
‒ Only simulate active units in the system

Parallel simulation of loosely-coupled simulation units
‒ Typically, between separate networked boards or machines
‒ Still, with controlled semantics
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Performance: Good Old Days

Intel/AMD performance competition 
drove host speed ahead of target 
speed

Target processors single-core

A few single-processor boards in a 
network
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Pain: Multicore Targets Increase Performance Demands

Single-core host performance mostly 
stagnant

Target processors going multicore

Target systems adding more boards

= more target cores per host core 

time
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Pain: Parallelizing Simics

We had to build a parallel program 
ourselves (which was painful)
‒ Correctness and performance

Maintaining determinism, 
checkpointing, reversibility

User adaptation and education
‒ Updating model semantics with 

maximal backwards-compatibility
‒ We had to introduce the concept of 

parallel ”cells” in a simulation 
‒ Stricter rules on how models and 

machines communicate. User modules 
are local-data share-nothing. 

‒ Essentially, most users write models 
that fit in well-defined ”plugs” in our 
framework, and which are simple 
sequential event-driven modules

Performance tuning
‒ Parallelizing Simics exposed many 

previously unimportant bottlenecks in 
the framework

‒ More tuning parameters were added to 
the simulation, in particular data 
propagation latencies

Parallelizing tightly-coupled 
processor cores proved futile
‒ Too much synchronization killed the 

benefits
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Parallel Simics: Hierarchical Synchronization

Deterministic semantics
‒ Regardless of host # cores

Periodic synchronization between 
different cells and target machines
‒ Puts a minimum latency on communication 

propagation
‒ Synch interval determines simulation results,

not number of execution threads in Simics

Latency within a cell:
‒ 1000-10000 cycles 
‒ Works well for SMP OS

Latency between cells:
‒ 10 to 1000 ms
‒ Works well for latency-tolerant networks

Builds on current Simics experience in 
temporally decoupled simulation
‒ Tried-and-tested, only executing faster on a 

multicore host

28
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link

Synchronize shared 
memory machine tightly

Longer latency on network 
between cells

Short latency between 
machines with tight network 
coupling, inside a single cell
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Gain: Parallelizing Simics

Gain: Scalability on single host
‒ Multicore hosts increase Simics 

scalability almost linearly
‒ ”Claw back” some of the 

performance pain caused by more 
complex target systems

‒ With 8-core or 16-core hosts, 
excellent scalability

‒ Much easier to control a single 
process than a distributed simulation
� Which we have done since 1998

time
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Host 
performance, 
single‐core

Target 
performance, 
multicore

The parallel simulator 
regains scaling

Host 
performance, 
multicore
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Performance Profile of Simics, Example
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Multithreading effectively 
removes the overhead of 
the second machine. 

As does hypersimulation, if 
the temporal decoupling is 
high enough.
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Simics is a branch-intense, data-sparse, irregular, integer program

General 
CPU

• Branch prediction, large caches, high clock frequency
• More real cores, SMT/”hyperthreading” not very helpful at maximum load
• Simics does not get much from multiple-issue machines (sometimes 2 IPC in JIT)
• Virtualization extensions on x86 useful for speeding things up

GPU

• Depends on massive data-level parallelism
• Assumes little synchronization between threads
• Assumes very many threads ready to run, not the handful that Simics tends to use
• Very poor match for Simics

FPGA

• If we could run Simics on an FPGA, we would be rich
• Shortcut to perfect CPU implementations… 

Multicore Hosts and Simics
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Pain: Multicore Features 

Multicore-aware debug
‒ Never assume a single core, ever
‒ No default processor, always point out 

the machine and processor you are 
working on 

Parallel scripting in Simics
‒ Parallel machines, operating systems 
‒ Parallel scripts controlling parallel 

targets, it can get messy ☺
‒ Our Simics CLI scripting system now 

has threads, barriers, and fifos

Integration with other tools

Modeling infrastructure
‒ Make it easy to configure
‒ Provide understanding

It is now scaling up to 
this... 

And hopefully not 
end up in a horrible 
haunted mess... 

This was the 
traditional feature 
set of Simics
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SUMMARY AND
FUTURE PERSPECTIVES
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Gain

Greater customer value from 
the simulator
‒ More complex systems, more value

Market appreciation for our 
unique features

Increased simulation scalability 
on a single host machine

Pain

Performance pressure
‒ Multicore chips in the targets
‒ More things in the targets in general

Target system complexity

Multicore-proofing features and 
tools in Simics 

Parallelizing Simics itself

What did Multicore Mean for Virtutech?
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Future Perspective: Making Sense of Trace Data

Modern simulator and hardware 
trace units produce ridiculous 
amounts of trace data
‒ Just tracing does not find bugs, it just 

produces raw data

Need tools to convert data into 
information:
‒ Visualization
‒ Scripting
‒ Automated understanding
‒ Detection of suspicious activity
‒ Tie to program semantics and code

Finding bugs and suspicious 
behavior in a huge pile of data

Could be a rich research area!
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Future Perspective: Hypervisors

Hypervisors are everywhere

Embedded cores are adding 
support for hypervision
‒ Freescale e500mc
‒ Cavium cnMIPS v2
‒ IBM Power Architecture
‒ Intel x86 VT
‒ And it is used on other cores as 

well

Would deserve some 
research… 
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QUESTIONS OR COMMENTS?

Also see http://jakob.engbloms.se for my blog, 
http://www.engbloms.se/jakob.html for previous talks and 
papers, and http://www.virtutech.com/ (dive into whitepapers) 
for more on Virtutech and our products.
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