
Multicore Pain (and Gain)
From a Virtual Platform
perspective
Dr. Jakob Engblom, Technical Marketing Manager

jakob@virtutech.com

mailto:jakob@virtutech.com

What has Multicore Meant for Us?

As a software development organization, multicore has impacted
Virtutech in several ways

‒ How we build our product

‒ How our customers use our product

‒ The nature of the products our customers build

‒ How our customers build their own products (using our product)

2009-11-262 MCC 2009 (Copyright 2009 Virtutech)

WHERE DO WE COME FROM?

2009-11-263 MCC 2009 (Copyright 2009 Virtutech)

Our Product: Virtual Platforms for System Development

MCC 2009 (Copyright 2009 Virtutech)2009-11-26

Virtual Platform

4

Virtual platform == software

Running on a regular PC, server,
or workstation

Functionally identical to the
target hardware

Runs the same software as the
physical hardware system

Purpose: to help customers
developed systems better
‒ In particular software at all levels

Virtutech Core Technology

The Simics product

Complete target simulation
‒ Run OS, drivers, all other software

Very fast simulation

Models any computer system
‒ Processor, SoCs, FPGA, ASICs
‒ Networks, multiple boards/machines
‒ Multicore processors

Targets:
‒ Single-core aerospace systems
‒ ... To multicore network processors
‒ ... To massive multiprocessor servers

MCC 2009 (Copyright 2009 Virtutech)2009-11-26

SimicsSimics

User application code

Host hardwareHost hardware

Host operating systemHost operating system

Virtual target hardware

Target operating system (s)

Middleware and libraries

Typically, an embedded
or real‐time control
computer system

5

DOES ANYONE CARE ABOUT
MULTICORE, ANYWAY?

2009-11-266 MCC 2009 (Copyright 2009 Virtutech)

Stackoverflow.com: Multicore tag

2009-11-267 MCC 2009 (Copyright 2009 Virtutech)

Stackoverflow.com: Some other Tags

Tag Posts
Multicore 116
Multithreading 2568
Boost (C++ library) 530
C++ 13991
C# 39808

2009-11-268 MCC 2009 (Copyright 2009 Virtutech)

Öredev 2009: the
Premier programming
conference in
Scandinavia

Multicore/parallel
programming is in the
program – but not
under any obvious
heading

Øredev 2009: Meanwhile, Multicore

2009-11-269 MCC 2009 (Copyright 2009 Virtutech)

Embedded Software

2009-11-2610 MCC 2009 (Copyright 2009 Virtutech)

Embedded Hardware

2009-11-2611 MCC 2009 (Copyright 2009 Virtutech)

Multicore is having a Huge Impact in Embedded

(Control-Plane) Chips going multicore at a rapid pace
‒ Across all architectures and markets, Power Architecture, MIPS, ARM, x86, …
‒ Not just in data plane, much more important and painful in the control plane

Software
‒ All players moving to support multicore

Embedded systems very exposed to the nature of the hardware
‒ Design particular hardware, integrated software/hardware solutions

Typical IT programming less exposed to hardware
‒ On top of a LAMP stack, SQL database, .net engine, JVM, do not see multicore:

it is hidden inside the middleware layers
‒ Most applications either trivially parallel (servers) or not performance sensitive

2009-11-2612 MCC 2009 (Copyright 2009 Virtutech)

Our Customers do Care about Multicore

Servers
• IBM, (Sun), ...
• Multiprocessor, multicore, multithreading

standard since 1990s
• Always doing SMP systems and software
• Multicore just piles on the cores faster

Infrastructure
• Ericsson, Cisco, ...
• Massive distributed, heterogeneous,

networked, multi-board, multi-processor
systems

• Adopting multicore everywhere in their
system

• Parallelizing software, maintaining legacy,
getting suppliers up to speed with multicore
tools and software kits

Semiconductors
• Freescale, IBM, ...
• Have to build multicore chips to stay

competitive
• Get multicore-aware software stacks in place

to make multicore chips sellable
• Develop ecosystem of programming tools,

operating systems, applications, frameworks,
APIs

Military & Aerospace
• Boeing, BAE, NASA, Wind River,

Lockheed-Martin, Honeywell, ...
• Still on single-processor single-core boards
• Scared of multicore, just like they were

scared of caches
• Dislike all things being hidden inside an SoC
• Know they cannot avoid multicore in order to

get next-generation performance

2009-11-2613 MCC 2009 (Copyright 2009 Virtutech)

MULTICORE IMPACT ON VIRTUTECH
CUSTOMERS AND SIMICS USERS

2009-11-2614 MCC 2009 (Copyright 2009 Virtutech)

Multicore Changed Things

Customer demand and
requirements
‒ The types of hardware and software

systems Simics is used for
‒ The required performance of the

simulator
‒ The required features of the

simulator

Our technology
‒ Simulating multicore
‒ Features for multicore
‒ Performance tuning of Simics
‒ Multithreading the simulator

2009-11-2615 MCC 2009 (Copyright 2009 Virtutech)

Simics-customer Systems in the Multicore Era

Baseline processor is now a multicore SoC with shared memory
‒ Used to be a single processor until 2005

Growth in the use and availability of hardware accelerators
‒ Crypto, security, pattern matching, network protocols, signal processing, …
‒ Accelerators make up 50% of the chip area in recent Cavium, Freescale chips

Massive DSP and NP farms
‒ Hundreds of DSPs and NPs are common in network processing

Software is the main value carrier
‒ 80% or more of system value added by software

Mostly standard parts
‒ Off-the-shelf multicore SoCs, with some application-specific FPGAs or ASICs

Software defines the system and glues it together
‒ Coordination between cores, chips, boards, racks, network nodes, ...

2009-11-2616 MCC 2009 (Copyright 2009 Virtutech)

Software Setup Example from Freescale

Hypervisor runs the system
‒ Hardware devices allocated to partitions by hypervisor
‒ Some virtual hardware devices introduced by hypervisor

Several static partitions, corresponding to what used to be separate chips or
boards

Source: Freescale Multicore Introduction, see http://jakob.engbloms.se/archives/877

2009-11-2617 MCC 2009 (Copyright 2009 Virtutech)

http://jakob.engbloms.se/archives/877

Board

Example Multicore System Setups

Processor

Core

OS

Board

Processor

Core

SMP OS

Core Core Core

OS OS

Classic single‐
processor system

Control‐plane on
SMP OS

Core

OS

Core

OS

Line‐card processing on
local‐memory Oses
(can be of different types)

Board

Processor

Core

SMP OS

Core

Processor

DSP
Core

DSP
Core

OS OS

DSP
Core

OS

DSP
Core

OS

Line‐card processing
on a DSP or network
processor unit

Control‐plane on
SMP OS, GPP

Board

Processor

Core

SMP OS

Core Core Core

SMP OS

Core

OS

Core

OS

Hypervisor

The next generation: target OS
running under the control of a
hypervisor

OS OS

Potentially with
more OS instances
than cores

Board

Processor

Core

SMP OS

Core Core Core

Single OS across
all cores

2009-11-2618 MCC 2009 (Copyright 2009 Virtutech)

Software Porting Pain

Operating systems has to go multicore
‒ Shared-memory symmetric MP (SMP) necessary to handle control-plane
‒ Local-memory asymmetric MP (AMP) typically also supported
‒ Hypervisors coming in to manage the complexity
‒ Enea OSE, Wind River VxWorks the two big transitions we have seen

Target software has to go parallel
‒ Old code tends not to work out of the box
‒ Multithreaded programs ≠ multicore programs
‒ Classic embedded programming uses locks and priorities, does not port well
‒ Find strategies to reuse existing code in compartments

Performance an ongoing exercise
‒ 1 core to 2 cores – just go parallel at all
‒ 2 cores to 3 cores – breaks things that assumed ”me or the other core”
‒ 8 cores – need to rethink parallelism and work division
‒ 20 cores – another rethink, remove any vestiges of global synchronization
‒ 100 cores – yet another rethink and redesign
‒ ... Just keep going ...

Yes... I know that using Erlang, MDA, Matlab, MPI, DSL, all help

2009-11-2619 MCC 2009 (Copyright 2009 Virtutech)

Debugging Pain

Parallel software systems are
non-deterministic and chaotic
‒ Very small timing disturbances can

lead to totally different system
execution

‒ Less stability
‒ Heisenbugs are common

Traditional rerun-to-repeat
debugging is typically
impossible

Increased stress on old software
‒ Running software truly concurrently

exposes latent bugs
‒ Bugs revealed by changes to OS

scheduler or compiler libraries

Less insight into the system
‒ Single debug port on a chip hides

many cores, buses, caches
‒ (Getting better now, finally)

Hard to look at part of a running
system without killing it
‒ Stopping one core, leave others

running, for example

2009-11-2620 MCC 2009 (Copyright 2009 Virtutech)

VIRTUTECH SIMICS AND MULTICORE

2009-11-2621 MCC 2009 (Copyright 2009 Virtutech)

What do Developers do with Simics

Software development
‒ Operating systems
‒ Middleware
‒ Applications
‒ Distributed applications

Testing
‒ Software integration
‒ Fault tolerance and reconfiguration
‒ Hardware in the loop

System architecture
‒ Function partitioning, processor placement, selection, memory sizes

Computer architecture
‒ Especially in academic settings

In almost all cases, speed of simulation is crucial to Simics value
‒ Strong culture of making Simics go fast, very fast
‒ We are talking 1000 of MHz or MIPS, slowdown on real code around 5 observed

Speed, I am Speed, …

2009-11-2622 MCC 2009 (Copyright 2009 Virtutech)

Simulation Helps with Multicore Systems Development

Multicore a shift that helps
introduce new technology
‒ Gain for Simics, as we solve

customer pain in a unique way

Simics Value to OEMs
‒ No more man-year bugs
‒ Hardware independence

Offer an execution environment
‒ Repeatable
‒ Reversible
‒ Encapsulate systems, with global

stop
‒ Debug and trace anything
‒ Configurable and variable
‒ Arbitrarily scalable

On hardware, only some
runs reproduce an error

On virtual hardware,
debugging is much easier

2009-11-2623 MCC 2009 (Copyright 2009 Virtutech)

Multicore Simulation in Simics

Multicore identical to multiprocessors & multiboard
‒ Several active processors in the system
‒ Packaging not relevant at the level that Simics operates
‒ Simics multi-processor from the start, thanks to Sun in 1998

Multiple tightly-coupled processors (typically, sharing memory)
simulated using round robin scheduling
‒ Simulator sets the semantics of the simulation, independent of host

Temporal decoupling for performance
‒ Run each CPU for a time slice before switching to next

Idle-time and idle-loop hypersimulation
‒ Only simulate active units in the system

Parallel simulation of loosely-coupled simulation units
‒ Typically, between separate networked boards or machines
‒ Still, with controlled semantics

2009-11-2624 MCC 2009 (Copyright 2009 Virtutech)

Performance: Good Old Days

Intel/AMD performance competition
drove host speed ahead of target
speed

Target processors single-core

A few single-processor boards in a
network

time

pe
rf
or
m
an
ce

Host x86
performance

Target ARM, PPC,
MIPS, SPARC
performance

Board

Processor
chip

Core

Board

Processor
chip

Core

Network

2009-11-2625 MCC 2009 (Copyright 2009 Virtutech)

Pain: Multicore Targets Increase Performance Demands

Single-core host performance mostly
stagnant

Target processors going multicore

Target systems adding more boards

= more target cores per host core

time

pe
rf
or
m
an
ce

Host
performance

Target
performance

Board
Processor

Board

Network

Processor

Board

2009-11-2626 MCC 2009 (Copyright 2009 Virtutech)

Pain: Parallelizing Simics

We had to build a parallel program
ourselves (which was painful)
‒ Correctness and performance

Maintaining determinism,
checkpointing, reversibility

User adaptation and education
‒ Updating model semantics with

maximal backwards-compatibility
‒ We had to introduce the concept of

parallel ”cells” in a simulation
‒ Stricter rules on how models and

machines communicate. User modules
are local-data share-nothing.

‒ Essentially, most users write models
that fit in well-defined ”plugs” in our
framework, and which are simple
sequential event-driven modules

Performance tuning
‒ Parallelizing Simics exposed many

previously unimportant bottlenecks in
the framework

‒ More tuning parameters were added to
the simulation, in particular data
propagation latencies

Parallelizing tightly-coupled
processor cores proved futile
‒ Too much synchronization killed the

benefits

2009-11-2627 MCC 2009 (Copyright 2009 Virtutech)

Parallel Simics: Hierarchical Synchronization

Deterministic semantics
‒ Regardless of host # cores

Periodic synchronization between
different cells and target machines
‒ Puts a minimum latency on communication

propagation
‒ Synch interval determines simulation results,

not number of execution threads in Simics

Latency within a cell:
‒ 1000-10000 cycles
‒ Works well for SMP OS

Latency between cells:
‒ 10 to 1000 ms
‒ Works well for latency-tolerant networks

Builds on current Simics experience in
temporally decoupled simulation
‒ Tried-and-tested, only executing faster on a

multicore host

28

link

link

Synchronize shared
memory machine tightly

Longer latency on network
between cells

Short latency between
machines with tight network
coupling, inside a single cell

2009-11-26 MCC 2009 (Copyright 2009 Virtutech)

Gain: Parallelizing Simics

Gain: Scalability on single host
‒ Multicore hosts increase Simics

scalability almost linearly
‒ ”Claw back” some of the

performance pain caused by more
complex target systems

‒ With 8-core or 16-core hosts,
excellent scalability

‒ Much easier to control a single
process than a distributed simulation
� Which we have done since 1998

time

pe
rf
or
m
an
ce

Host
performance,
single‐core

Target
performance,
multicore

The parallel simulator
regains scaling

Host
performance,
multicore

2009-11-2629 MCC 2009 (Copyright 2009 Virtutech)

Performance Profile of Simics, Example

‐20%

0%

20%

40%

60%

80%

100%

120%

0

20

40

60

80

100

120

10 10
0

10
00

10
00

0

10
00

00

Temporal decoupling time quantum length

Re
la
ti
ve
 S
pe

ed

Computation‐Intense Benchmark on 8‐Core P4080

Single P4080

With second P4080 idling

With second P4080 multithreaded

Overhead of second P4080 idling

Multithreading effectively
removes the overhead of
the second machine.

As does hypersimulation, if
the temporal decoupling is
high enough.

2009-11-2630 MCC 2009 (Copyright 2009 Virtutech)

Simics is a branch-intense, data-sparse, irregular, integer program

General
CPU

• Branch prediction, large caches, high clock frequency
• More real cores, SMT/”hyperthreading” not very helpful at maximum load
• Simics does not get much from multiple-issue machines (sometimes 2 IPC in JIT)
• Virtualization extensions on x86 useful for speeding things up

GPU

• Depends on massive data-level parallelism
• Assumes little synchronization between threads
• Assumes very many threads ready to run, not the handful that Simics tends to use
• Very poor match for Simics

FPGA

• If we could run Simics on an FPGA, we would be rich
• Shortcut to perfect CPU implementations…

Multicore Hosts and Simics

2009-11-2631 MCC 2009 (Copyright 2009 Virtutech)

Pain: Multicore Features

Multicore-aware debug
‒ Never assume a single core, ever
‒ No default processor, always point out

the machine and processor you are
working on

Parallel scripting in Simics
‒ Parallel machines, operating systems
‒ Parallel scripts controlling parallel

targets, it can get messy ☺
‒ Our Simics CLI scripting system now

has threads, barriers, and fifos

Integration with other tools

Modeling infrastructure
‒ Make it easy to configure
‒ Provide understanding

It is now scaling up to
this...

And hopefully not
end up in a horrible
haunted mess...

This was the
traditional feature
set of Simics

2009-11-2632 MCC 2009 (Copyright 2009 Virtutech)

SUMMARY AND
FUTURE PERSPECTIVES

2009-11-2633 MCC 2009 (Copyright 2009 Virtutech)

Gain

Greater customer value from
the simulator
‒ More complex systems, more value

Market appreciation for our
unique features

Increased simulation scalability
on a single host machine

Pain

Performance pressure
‒ Multicore chips in the targets
‒ More things in the targets in general

Target system complexity

Multicore-proofing features and
tools in Simics

Parallelizing Simics itself

What did Multicore Mean for Virtutech?

2009-11-2634 MCC 2009 (Copyright 2009 Virtutech)

Future Perspective: Making Sense of Trace Data

Modern simulator and hardware
trace units produce ridiculous
amounts of trace data
‒ Just tracing does not find bugs, it just

produces raw data

Need tools to convert data into
information:
‒ Visualization
‒ Scripting
‒ Automated understanding
‒ Detection of suspicious activity
‒ Tie to program semantics and code

Finding bugs and suspicious
behavior in a huge pile of data

Could be a rich research area!

2009-11-2635 MCC 2009 (Copyright 2009 Virtutech)

Future Perspective: Hypervisors

Hypervisors are everywhere

Embedded cores are adding
support for hypervision
‒ Freescale e500mc
‒ Cavium cnMIPS v2
‒ IBM Power Architecture
‒ Intel x86 VT
‒ And it is used on other cores as

well

Would deserve some
research…

2009-11-2636 MCC 2009 (Copyright 2009 Virtutech)

QUESTIONS OR COMMENTS?

Also see http://jakob.engbloms.se for my blog,
http://www.engbloms.se/jakob.html for previous talks and
papers, and http://www.virtutech.com/ (dive into whitepapers)
for more on Virtutech and our products.

2009-11-2637 MCC 2009 (Copyright 2009 Virtutech)

http://jakob.engbloms.se/
http://www.engbloms.se/jakob.html
http://www.virtutech.com/

	Multicore Pain (and Gain)�From a Virtual Platform perspective
	What has Multicore Meant for Us?
	Where Do we come From?
	Our Product: Virtual Platforms for System Development
	Virtutech Core Technology
	Does anyone care about multicore, anyway?
	Stackoverflow.com: Multicore tag
	Stackoverflow.com: Some other Tags
	Øredev 2009: Meanwhile, Multicore
	Embedded Software
	Embedded Hardware
	Multicore is having a Huge Impact in Embedded
	Our Customers do Care about Multicore
	Multicore Impact on Virtutech Customers and Simics Users
	Multicore Changed Things
	Simics-customer Systems in the Multicore Era
	Software Setup Example from Freescale
	Example Multicore System Setups
	Software Porting Pain
	Debugging Pain
	Virtutech Simics and Multicore
	What do Developers do with Simics
	Simulation Helps with Multicore Systems Development
	Multicore Simulation in Simics
	Performance: Good Old Days
	Pain: Multicore Targets Increase Performance Demands
	Pain: Parallelizing Simics
	Parallel Simics: Hierarchical Synchronization
	Gain: Parallelizing Simics
	Performance Profile of Simics, Example
	Multicore Hosts and Simics
	Pain: Multicore Features
	Summary and �Future Perspectives
	What did Multicore Mean for Virtutech?
	Future Perspective: Making Sense of Trace Data
	Future Perspective: Hypervisors
	Questions or Comments?
	Backups
	Computer Architecture Simulation & Parallelism
	The Key to Gain: Our Technology
	Determinism != Fixed Execution
	Stubs Example
	Stubbing DSP Boards: The Full Model
	Stubbing DSP Boards: Replace DSPs with Abstraction
	Stubbing DSP Boards: Abstract Entire Board
	Semantic Requirements
	Temporal Decoupling
	Parallel Execution
	Gain: Parallelizing Simics

