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Background

The Multicore Revolution

I Performance improvement for single-core processors limited

I Multicore processors are now the norm

I Requires parallel software

Problem: Parallel programming is hard.
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Goal and Scope

Goal

Make parallel programming easy.

Find idioms, building blocks, and programming models to

I Increase productivity

I Reduce programming mistakes

I Facilitate efficient implementations

Scope
I Scientific Computing

I Floating point operations
I High throughput

I Shared Memory, User-Level Software
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What Makes Parallel Programming Hard?

Difficulty: Synchronization between threads

I Waiting for results

I Atomic updates

Primitives:
I Atomic read-modify-write instructions such as

I Compare-And-Swap, Fetch-And-Add, . . .

I Used to build higher level constructs
I Locks, Condition variables, Barriers, . . .

New sync constructs could simplify parallel programming
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Hardware Transactional Memory

Paper I



What is Hardware Transactional Memory?

Example: Double-Ended Queue

Want to concurrently:

I Add elements to end of queue

I Remove elements from front of queue

I Hard to allow this using locks

I Simple and efficient with transactions:

BEGIN TRANSACTION

deque.push_back( element );

END TRANSACTION

BEGIN TRANSACTION

element = deque.pop_front();

END TRANSACTION

Properties:

I No intermediate states observable

I Aborted if collisions occur
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Why Hardware Transactional Memory?

Transactions are optimistic:

I Handle collisions only when they occur

I Locks always first acquire exclusive access

Also:

I Avoids storing and accessing lock variables

Locks

pthread_mutex_t lock variable;

void f() {

pthread_mutex_lock( &lock variable );

counter = counter + 1;

pthread_mutex_unlock( &lock variable );

}

Transactions

void f() {

BEGIN TRANSACTION

counter = counter + 1;

END TRANSACTION

}
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Hardware Transactional Memory on Rock

I We use a prototype of Sun’s (later Oracle’s) Rock processor.

New Instructions for Transactional Memory

chkpt <fail_addr>

commit

read %cps, <dest_reg>

I chkpt starts a transaction

I commit ends a transaction

I If the transaction fails, jump to fail_addr

I If the transaction fails, the reason is stored in the cps register.
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Hardware Transactional Memory on Rock

Best-effort system:

I Transactions are not guaranteed to succeed
I Possible failure reasons:

I Conflict, Size, Load, Store, Interrupt, Mispredicted branch,
Exception, Floating point division, . . .

When a transaction fails:

I Check why

I If load or store: Load the memory into level 1 cache

I If conflict: Use exponential backoff to avoid congestion
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Transactional Memory for Scientific Computing

Idea: Use transactions to perform atomic floating point updates.

Scenario: Several threads updates a shared matrix.

Alternatives
I Use locks to protect shared memory

- Access and store lock variables
- Always need to assure exclusive access (pessimistic)

I Write to private buffers and merge later

- Occupy and access more memory
- Additional merge phase

I Use atomic instructions: compare-and-swap
- Only available for integers: trick needed

Transactions is a good alternative, if collisions are rare.
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Experiment: Single Thread Increases a Variable

Benchmark

variable[0] += delta[0];
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I CAS: Move data between FPU and CPU
I Locks: Accesses lock variable, library function calls
I Nothing: Lower bound

Locks: 356 ns

Transactions: 142 ns

Nothing: 52 ns

CAS: 1286 ns

Locks: 340 ns

Transactions: 105 ns

Nothing: 13 ns

CAS: 164 ns
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Experiment: Several Threads Write to Shared Memory

Benchmark

for (i = 0; i < n; ++i)

if ((i % freq) == 0) shared += delta;

else local += delta;
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I 16 threads updating a single element
I Write to shared memory every nth iteration
I Transactions much slower than in previous test (105 ns → 254 ns)
I Only about 15 % of the transactions failed at highest contention

Locks: 13779 ns

CAS: 3088 ns

Transactions: 1792 ns

Locks: 934 ns

CAS: 171 ns

Transactions: 264 ns
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Experiment: n-Body Simulation

Benchmark

An n-body simulation of 1024 particles interacting pair-wise.

I Updates 4 elements at a time

I Small data set
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I Transactions slightly faster than locks
I Compare-and-swap slow since it updates a single elements
I Avoiding concurrent updates by far most efficient
I About 0.4 % of the transactions failed (52 % conflicts, 34 % reads)

Private Buffers: 14 x

Transactions: 4.7 x
Locks: 4.1 x

CAS: 2.9 x
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Hardware Transactional Memory: Conclusions

Conclusions

Transactions are:

I More efficient than locks in all tests

I More efficient than compare-and-swap
if several elements can be updated at same time

I Sensitive to memory traffic

It is still best to avoid concurrent updates when possible.
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Multicore Programming Models

Paper II and III



Multicore Programming Models

POSIX threads (or Windows threads)

I Basic functionality provided by the operating system

I Want higher abstraction level

Fork-Join parallel languages

I OpenMP, Cilk

I Limited to Fork-Join parallel structures

Dependency-Aware Task-Based Systems

I OMP Superscalar, . . .
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Fork-Join vs General Task Graph

Fork-Join
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Fork-Join vs General Task Graph

Fork-Join:

I Well suited for recursive algorithms

I Does not fit all applications

Example Execution Traces:
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Jakub Kurzak, Hatem Ltaief, Jack Dongarra, and Rosa M. Badia.
Scheduling Linear Algebra Operations on Multicore Processors. LAWN 213, 2009. 18/34
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18/34



Multicore Programming Models

Conclusions
I Fork-Join parallelism is not enough

I Support for general dependencies is important for performance
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Expressing Parallelism

Task dependencies can be deduced from data-flow:

taskA(write a);

taskB(read a, write b);

taskC(read a, write c);

taskD(read b);

taskE(read b, read c);

A

B C

D E

I Programmer writes a sequential program

I Annotates tasks and their inputs and outputs

I Dependencies deduced by run-time system

I Tasks are executed in parallel when possible

Used in several task-based systems: Jade, OMP Superscalar, StarPU, Quark, . . .
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SuperGlue
Our Run-Time System for
Task-Based Programming



SuperGlue

Motivation

I Test bed for experimenting with task-based programming

I Application driven design to suit our needs

Design Goals

I Performance

I Generality

I Ease-of-use
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SuperGlue

Programming Model:
I Programmer writes a sequential program
I Specifies tasks, and their inputs and outputs
I Run-time deduces dependencies and executes tasks in parallel

Run-Time System:
I One worker thread per core
I One ready task queue per worker thread
I Task stealing for load balancing

Ready Queues

Ready Tasks

Worker Threads
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Handles

Handles

Handles are abstract objects for managing dependencies.

Handle x;

taskA(write x);

taskB(read x);

Handles:
I Represents the shared resource to manage:

I Block of a matrix
I Slice of a vector

I No coupling needed between handle and actual resource
I Run-time system does not need to know the data structure

I Represent abstract resource for constrained scheduling
I Task cache/memory usage
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Dependency Management

Dependency management through Data Versioning:

I Tasks have dependencies on handles, not on other tasks

I Each handle has a version

I Each task has a required version for each accessed handle

Example

Handle x;

taskA(write x); // taskA requires x version 0

taskB(read x); // taskB requires x version 1

Note: We do not keep several versions of data.
Versions only used for dependency management.
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Data Versioning

Example

8 tasks accessing the same handle x:

read x , read x , modify x , add x , add x , add x , modify x

read read
Requires version 0
(Run all at once)

modify Requires version 2

add

add add

Requires version 3
(Any order)
(One at the time)

modify Requires version 6

read

modify

read

add

add add

modify

Graph View
(Not a DAG)
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Data Versioning

Implications:

– Another layer of indirection
Successors are stored in the handles.

+ No global view
A task only knows the handles it accesses.

A handle only knows tasks that are waiting.

+ No coupling between tasks
Tasks can be deleted at any time.

Successors need not be known.

A

B C D

Classic

handle

B C D

A

Handles
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Locality Driven Scheduling

Scheduling

I When a task is added its dependencies are checked

I The task is enqueued at first unavailable handle
I When a worker finishes a task, it

I Increases the handle versions
I Puts the tasks waiting for the new version in its ready queue

Ready Queues

Ready Tasks

Worker Threads

Data

Waiting Tasks

Tasks will be executed by the thread that produced the data.
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Performance Tests



N-Body Speedup
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N-Body simulation: 8192 particles, 256 per block, 16 time steps.
4 x AMD Opteron 6276 = 4 x 8 modules, 1 FPU per module
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N-Body Speedup
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N-Body simulation: 8192 particles, 256 per block, 16 time steps.
4 x AMD Opteron 6276 = 4 x 8 modules, 1 FPU per module

30x @ 32 cores 32x @ 64 cores

97%
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N-Body Execution Trace

N-Body simulation: 8192 particles, 256 per block, 16 time steps.
4 x AMD Opteron 6276 = 4 x 8 modules, 1 FPU per module.
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Speedup at Small Task Sizes
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I Speedup over #cycles × #tasks

I 64,000 tasks, no dependencies, varying number of cycles/task

I Tasks only read clock counter
(no memory accesses or computations)
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Conclusion

Dependency-aware task-based models are:

I Efficient

I Suitable for a large class of applications

I User friendly

Version-driven dependency management has nice properties:

I Easy, Efficient, and Flexible
I No global view:

I A task only knows the data (handles) it accesses
I A handle only knows tasks waiting for it

SuperGlue is an efficient and flexible implementation of this.
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Outlook

Outlook

I Generalize to distributed memory

I Support heterogeneous architectures

I Use to implement real applications

I Compiler front-end to make a nice interface
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Thank you!
Questions?



Code Example

class SparseMatVecTask : public Task<Options> {

private:

const SparseMatrixCSR &DP;

MatrixRowMajor &H, &T;

public:

SparseMatVecTask(const SparseMatrixCSR &DP_,

MatrixRowMajor &H_, Handle<Options> &hH,

MatrixRowMajor &T_, Handle<Options> &hT)

: DP(DP_), H(H_), T(T_)

{

registerAccess(ReadWriteAdd::read, &hH);

registerAccess(ReadWriteAdd::add, &hT);

}

void run() { /* T(r) += DP(r,c) * H(c); */ }

};

for (size_t r = 0; r < numRows; ++r)

for (size_t c = 0; c < numCols; ++c)

tl->addTask( new SparseMatVecTask(DPx[r][c],

H, hH[c],

Tx, hTx[r]) );
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Computing Required Versions

Computing Required Versions:

I Handle knows next-required-version for each access type

I When task is added:
I The task asks the handles for which version to require
I The handles update the next-required-version

for accesses that cannot be reordered

Example

Handle x: next read 0
next write 0

taskA(read x); // require x version 0

Handle x: next read 0
next write 1

taskB(read x); // require x version 0

Handle x: next read 0
next write 2

taskC(write x); // require x version 2

Handle x: next read 3
next write 3
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Extensions

Possible to define other access types

Example

Access Types
read: Reorderable, not exclusive
write: Not reorderable
add: Reorderable, exclusive
mult: Reorderable, exclusive

Example
read x

add x

add x

mult x

mult x

write x

Graph
read

add add

mult mult

write

Example

Access Types
read: Reorderable, not exclusive
write: Not reorderable
concurrent: Reorderable, not exclusive

Example
read x

read x

conc x

conc x

write x

Graph
read

conc conc

read

write
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Limitations

Limitation: Can only reorder accesses of same type.

Example: read, write, sort, sum

Can be reordered:

I read - read

I read - sum

I sort - sum

Example
read x

sum x

read x

sort x

write x

Graph
read

sort

read

write

sum

I Sort must wait for both reads to finish

I Sort need not wait for the sum task

I ⇒ Not enough to count the number of executed tasks

This requires more than one version counter per handle.
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Reductions

Allow exclusive accesses to same handle to run concurrently.

I First task writes directly to destination

I If destination is busy, writes to temporary storage

I Reuse existing temporary storages, if one exists
I Temporary storages are merged:

I Before executing a task with read access to the handle
I When attaching a temporary storage and one already exist

Properties

I Use as few buffers as possible

I Allow parallel merge

I Good locality
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The Add Access Type

Example: Calculate forces between all pairs of particles.

Code
// for each pair (i, j)

for (int i = 0; i < N; i++)

for (int j = i+1; j < N; j++)

force = calcForce(i, j);

A[i] += force;

A[j] -= force;

I Order does not matter

I Two tasks cannot write to
same memory concurrently
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The Add Access Type

Example: Calculate forces between all pairs of particles.

Code
// for each pair (i, j)

for (int i = 0; i < N; i++)

for (int j = i+1; j < N; j++)

force = calcForce(i, j);
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A[j] -= force;
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I Two tasks cannot write to
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Execution Traces: Benefit of Add Accesses

Write:

Add:

N-body simulation, 8192 particles, 512 per block, 4 time steps.
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More Code

#include "tasklib.hpp"

#include "options/defaults.hpp"

#include "options/prioscheduler.hpp"

// Custom handle type to include indices

template<typename Options>

struct MyHandle : public Handle_<Options> {

size_t i, j;

void set(size_t i_, size_t j_) { i = i_; j = j_; }

size_t geti() { return i; }

size_t getj() { return j; }

};

struct Options : public DefaultOptions<Options> {

typedef MyHandle<Options> HandleType; // Override handle type

typedef PrioScheduler<Options> Scheduler; // Override scheduler

typedef Enable TaskPriorities; // Enable task priorities

};
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More Code

struct gemm : public Task<Options, 3> {

gemm(Handle<Options> &h1, Handle<Options> &h2,

Handle<Options> &h3) {

// register data accesses to manage, with direction

registerAccess(ReadWriteAdd::read, &h1);

registerAccess(ReadWriteAdd::read, &h2);

registerAccess(ReadWriteAdd::add, &h3);

}

void run() {

Handle<Options> &h1(getAccess(0).getHandle());

Handle<Options> &h2(getAccess(1).getHandle());

Handle<Options> &h3(getAccess(2).getHandle());

double *a(Adata[h1->geti()*DIM + h1->getj()]);

double *b(Adata[h2->geti()*DIM + h2->getj()]);

double *c(Adata[h3->geti()*DIM + h3->getj()]);

double DONE=1.0, DMONE=-1.0;

dgemm("N", "T", &nb, &nb, &nb, &DMONE, a, &nb, b, &nb, ...

}

int getPriority() const { return 0; }

};

44



More Code

static void cholesky(const size_t numBlocks) {

// Start the system

ThreadManager<Options> tm;

// Create handles, and set the custom indices

Handle<Options> **A = new Handle<Options>*[numBlocks];

for (size_t i = 0; i < numBlocks; ++i) {

A[i] = new Handle<Options>[numBlocks];

for (size_t j = 0; j < numBlocks; ++j)

A[i][j].set(i, j);

}

// Main code: Generate tasks

for (size_t j = 0; j < numBlocks; j++) {

for (size_t k = 0; k < j; k++)

for (size_t i = j+1; i < numBlocks; i++)

tm.addTask(new gemm(A[i][k], A[j][k], A[i][j]), i);

for (size_t i = 0; i < j; i++)

tm.addTask(new syrk(A[j][i], A[j][j]), j);

tm.addTask(new potrf(A[j][j]), j);

for (size_t i = j+1; i < numBlocks; i++)

tm.addTask(new trsm(A[j][j], A[i][j]), j);

}

tm.barrier();

}
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HTM Experiment: FEM Stiffness Matrix Assembly

Benchmark

Assembly of the stiffness matrix in a finite element scheme (2154 nodes).

I Two versions: many or few computations per triangle

I Scattered memory accesses spread over large address space
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I Transactions best when computation bound
I Compare-and-swap best when memory bound
I Locks slowest: One lock per element used
I About 23 % of the transactions failed, most due to failed reads 46



N-Body Speedup on ”Halvan”
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N-Body simulation: 8192 particles, 128 per block, 4 time steps.
8 x Xeon X6550 = 8 x 8 cores
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N-Body Speedup on ”Halvan”
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N-Body simulation: 8192 particles, 128 per block, 4 time steps.
8 x Xeon X6550 = 8 x 8 cores

50x @ 64 cores

94%
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