UPPSALA
UNIVERSITET

Leveraging Multicore Processors
for Scientific Computing

Martin Tillenius

UP/\\ARC

1. Background and Scope
2. Hardware Transactional Memory

3. Multicore Programming Models

1/34

Background

The Multicore Revolution

» Performance improvement for single-core processors limited
» Multicore processors are now the norm

» Requires parallel software

Problem: Parallel programming is hard.

2/34

Goal and Scope

Make parallel programming easy.

Find idioms, building blocks, and programming models to
> Increase productivity
» Reduce programming mistakes

» Facilitate efficient implementations

Scope
» Scientific Computing
> Floating point operations
» High throughput

» Shared Memory, User-Level Software

3/34

What Makes Parallel Programming Hard?

Difficulty: Synchronization between threads
» Waiting for results

» Atomic updates

Primitives:
» Atomic read-modify-write instructions such as
» Compare-And-Swap, Fetch-And-Add, ...
» Used to build higher level constructs
» Locks, Condition variables, Barriers, ...

New sync constructs could simplify parallel programming

4/34

Hardware Transactional Memory

Paper |

What is Hardware Transactional Memory?

Example: Double-Ended Queue

Want to concurrently:

v

Add elements to end of queue

v

Remove elements from front of queue

v

Hard to allow this using locks

» Simple and efficient with transactions:
BEGIN TRANSACTION BEGIN TRANSACTION
deque.push_back(element); element = deque.pop_front();
END TRANSACTION END TRANSACTION
Properties:

» No intermediate states observable

» Aborted if collisions occur

6/34

Why Hardware Transactional Memory?

Transactions are optimistic:

» Handle collisions only when they occur

> Locks always first acquire exclusive access

Also:

» Avoids storing and accessing lock variables

Locks

pthread_mutex_t lock_variable;

void £() {
pthread_mutex_lock(&lock_variable);
counter = counter + 1;
pthread_mutex_unlock(&lock_variable);

}

Transactions

void £() {
BEGIN TRANSACTION
counter = counter + 1;
END TRANSACTION
}

7/34

Hardware Transactional Memory on Rock

» We use a prototype of Sun’s (later Oracle’'s) Rock processor.

New Instructions for Transactional Memory

chkpt <fail_addr>
commit
read %cps, <dest_reg>

v

chkpt starts a transaction

commit ends a transaction

v

v

If the transaction fails, jump to fail_addr

v

If the transaction fails, the reason is stored in the cps register.

8/34

Hardware Transactional Memory on Rock

Best-effort system:

» Transactions are not guaranteed to succeed
» Possible failure reasons:

» Conflict, Size, Load, Store, Interrupt, Mispredicted branch,
Exception, Floating point division, ...

When a transaction fails:
» Check why
> If load or store: Load the memory into level 1 cache

» If conflict: Use exponential backoff to avoid congestion

9/34

Transactional Memory for Scientific Computing

Idea: Use transactions to perform atomic floating point updates.
Scenario: Several threads updates a shared matrix.

Alternatives
» Use locks to protect shared memory

- Access and store lock variables
- Always need to assure exclusive access (pessimistic)

» Write to private buffers and merge later

- Occupy and access more memory
- Additional merge phase

» Use atomic instructions: compare-and-swap
- Only available for integers: trick needed

Transactions is a good alternative, if collisions are rare.

10/34

Experiment: Single Thread Increases a Variable

Benchmark

variable [0] += deltal[0];

600, CAS: 1286 ns
550 / ma Locks
=00 / v CAS

2 450 / e—e Transactions
2 400 / »a Nothing

Locks: 356 ns

Locks: 340 ns B 350 AR

Q
5 300
g 250
o 200
CAS: 164 ns £ 150
Transactions: 105 ns = 100
50 Nothing: 52 ns
Nothing: 13 ns ou—
1 2 4 8

Number of elements per update

Transactions: 142 ns

» CAS: Move data between FPU and CPU
» Locks: Accesses lock variable, library function calls
> Nothing: Lower bound

11/34

Experiment: Several Threads Write to Shared Memory

Benchmark

for (i = 0; i < n; ++i)
if ((i % freq) == 0) shared += delta;

else local += delta;
12800} == Locks Locks: 13779 ns
. o—e Transactions|
Y 6400 v CAS
L 3200 CAS: 3088 ns
©
° .
T ti 1 1792
% 160 /’. % ransactions ns
Locks: 934 ns & 800 — e

o
° //
E 400 >

Transactions: 264 ns i~ o /

CAS: 171 ns 2007y
10

0.2 0510 2 5 10 20 50 100
Potential conflicts (%)

16 threads updating a single element

Write to shared memory every n'" iteration

Transactions much slower than in previous test (105 ns — 254 ns)

Only about 15 % of the transactions failed at highest contention 12/34

vyvyyvyy

Experiment: n-Body Simulation

Benchmark

An n-body simulation of 1024 particles interacting pair-wise.

» Updates 4 elements at a time

» Small data set

16

15(-- Ideal)
ki %g + Private Buffers Private Buffers: 14 x
@ 75l Transactions
4 11 == Locks
2 101+ cAs .
‘E 2 B Transactions: 4.7 x
$ 8 B Locks: 4.1 x
3 7 .
‘g‘ 2) CAS: 2.9 x
o 4 PP .
g 3 e
[e

[P =

0

12 4 8 16

Number of threads

Transactions slightly faster than locks

Compare-and-swap slow since it updates a single elements

Avoiding concurrent updates by far most efficient

About 0.4 % of the transactions failed (52 % conflicts, 34 % reads) 35,

vvyyvyy

Hardware Transactional Memory: Conclusions

Conclusions

Transactions are:
» More efficient than locks in all tests

» More efficient than compare-and-swap
if several elements can be updated at same time

> Sensitive to memory traffic

It is still best to avoid concurrent updates when possible.

14/34

Multicore Programming Models

Paper Il and Il

Multicore Programming Models

POSIX threads (or Windows threads)
» Basic functionality provided by the operating system

» Want higher abstraction level

Fork-Join parallel languages
» OpenMP, Cilk

> Limited to Fork-Join parallel structures

Dependency-Aware Task-Based Systems
» OMP Superscalar, ...

16/34

Fork-Join vs General Task Graph

Fork-Join General (OMPSs)

SCGip0e

OpenMP: Loop Parallelism

0{’: eeo

OpenI\/IP: Tasks Cllk FU”y-StI’ICt General Task Graphs

17/34

Fork-Join vs General Task Graph

Fork-Join:
> Well suited for recursive algorithms
» Does not fit all applications

Example Execution Traces:

General:

Thread

Fork-Join:

Thread
ol B
>

ol —
w
IN
ul

Fork-Join:

A

Thread

|
B [D |
5

N;;
w
IN

1

0 A

0 1
Time

See also:

Jakub Kurzak, Hatem Ltaief, Jack Dongarra, and Rosa M. Badia.
Scheduling Linear Algebra Operations on Multicore Processors. LAWN 213, 2009.

i

General

RE
816

Fork-Join

Fork-Join

18/34

Fork-Join vs General Task Graph

Fork-Join:
> Well suited for recursive algorithms

» Does not fit all applications

[Improvement]

Example Execution Traces:

General:

Thread

1
0
0

>
w
O

Fork-Join:

Fhread

1
0 A

White = Idle = Bad

- E
Fork-Join: EO y 5
0 1 2 3 4 5 6
Time
See also:

Jakub Kurzak, Hatem Ltaief, Jack Dongarra, and Rosa M. Badia.

Scheduling Linear Algebra Operations on Multicore Processors. LAWN 213, 2009.

General

s
@ ®

Fork-Join

Fork-Join

18/34

Multicore Programming Models

> Fork-Join parallelism is not enough

» Support for general dependencies is important for performance

19/34

Expressing Parallelism

Task dependencies can be deduced from data-flow:

taskA(write a);

taskB(read a, write b);
taskC(read a, write c); e e

taskD(read b);

taskE(read b, read c); e G

» Programmer writes a sequential program
» Annotates tasks and their inputs and outputs
» Dependencies deduced by run-time system

» Tasks are executed in parallel when possible

Used in several task-based systems: Jade, OMP Superscalar, StarPU, Quark, ...

20/34

SuperGlue

Our Run-Time System for
Task-Based Programming

SuperGlue

Motivation
» Test bed for experimenting with task-based programming

» Application driven design to suit our needs

Design Goals
> Performance
» Generality

» Ease-of-use

22/34

SuperGlue

Programming Model:
» Programmer writes a sequential program
» Specifies tasks, and their inputs and outputs
» Run-time deduces dependencies and executes tasks in parallel

Run-Time System:
» One worker thread per core
» One ready task queue per worker thread
» Task stealing for load balancing

Ready Queues

Ready TéskseEEEEEE

Worker Threads
23/34

Handles are abstract objects for managing dependencies.

Handle x;
taskA(write x);
taskB(read x);

Handles:
> Represents the shared resource to manage:

» Block of a matrix
» Slice of a vector

> No coupling needed between handle and actual resource

» Run-time system does not need to know the data structure
» Represent abstract resource for constrained scheduling

» Task cache/memory usage

24/34

Dependency Management

Dependency management through Data Versioning:
» Tasks have dependencies on handles, not on other tasks
» Each handle has a version

» Each task has a required version for each accessed handle

Handle x;
taskA(write x); // taskA requires x version 0
taskB(read x); // taskB requires x version 1

Note: We do not keep several versions of data.
Versions only used for dependency management.

25/34

Data Versioning

8 tasks accessing the same handle x:

\read x\, \read x\, \modify x\, |add x|, |add x\, |add x\, \modify x\

Requires version 0 @ @
(Run all at once)
.@ﬂb Requires version 2
@
Requires version 3 @ @

(Any order)

" (One at the time) @
Requires version 6 (ﬁlr;tpz E)/:sév)

26/34

Data Versioning

Implications:
— Another layer of indirection
Successors are stored in the handles.
+ No global view
A task only knows the handles it accesses.

A handle only knows tasks that are waiting.

+ No coupling between tasks
Tasks can be deleted at any time.
Successors need not be known.

Classic

Handles

27/34

Locality Driven Scheduling

Scheduling
» When a task is added its dependencies are checked
» The task is enqueued at first unavailable handle

» When a worker finishes a task, it

> Increases the handle versions
» Puts the tasks waiting for the new version in its ready queue

Ready Queues

Waiting Tasks

Ready Tasks <E

Worker Threads

Tasks will be executed by the thread that produced the data.

28/34

Performance Tests

N-Body Speedup

64l == Ideal S SO SO SO SO
— Compensated

% 8 16 24 32 40 48 56 64
#cores

N-Body simulation: 8192 particles, 256 per block, 16 time steps.
4 x AMD Opteron 6276 = 4 x 8 modules, 1 FPU per module

30/34

N-Body Speedup

64l == Ideal R
— Compensated|
56/ — Speedup ' N
48— e
e
b}
Q32 ~
n
24/
[RS S s =
[30x @ 32 cores] [32x @ 64 cores]
; ; ‘ ‘ ‘ ‘ ; il
0O 8 16 24 32 40 48 56 64

#cores

N-Body simulation: 8192 particles, 256 per block, 16 time steps.
4 x AMD Opteron 6276 = 4 x 8 modules, 1 FPU per module

30/34

N-Body Execution Trace

64

% 100 200 300 400 500
M Cycles

N-Body simulation: 8192 particles, 256 per block, 16 time steps.
4 x AMD Opteron 6276 = 4 x 8 modules, 1 FPU per module.

31/34

Speedup at Small Task Sizes

== I|deal H
64r __ 1000k (450ps) | : : H e
sel| — 500Kk (2200
— 200k (90ps)
— 100k (454s)
a8 50k (22y15)
20Kk (9ps
2 a0 0k (9ps)
3 — 10K (5ps)
g 3l 1K (50075)
& - -
241
16f
gho
c0 8 16 24 32 40 48 56 64

#cores

> Speedup over #cycles x Ftasks
> 64,000 tasks, no dependencies, varying number of cycles/task

» Tasks only read clock counter
(no memory accesses or computations)

32/34

Conclusion

Dependency-aware task-based models are:
» Efficient
» Suitable for a large class of applications

> User friendly

Version-driven dependency management has nice properties:
» Easy, Efficient, and Flexible

» No global view:

» A task only knows the data (handles) it accesses
» A handle only knows tasks waiting for it

SuperGlue is an efficient and flexible implementation of this.

33/34

Outlook

» Generalize to distributed memory

v

Support heterogeneous architectures

v

Use to implement real applications

v

Compiler front-end to make a nice interface

34/34

Thank youl!

Questions?

Code Example

class SparseMatVecTask : public Task<Options> {
private:

const SparseMatrixCSR &DP;

MatrixRowMajor &H, &T;

public:
SparseMatVecTask(const SparseMatrixCSR &DP_,
MatrixRowMajor &H_, Handle<Options> &hH,
MatrixRowMajor &T_, Handle<Options> &hT)
: DP(DP_), H(H.), T(T.)
{
registerAccess(ReadWriteAdd: :read, &hH);
registerAccess(ReadWriteAdd: :add, &hT);
}

void run() { /* T(r) += DP(r,c) * H(c); */ }
};

for (size_t r = 0; r < numRows; ++r)
for (size_t ¢ = 0; ¢ < numCols; ++c)
tl->addTask(new SparseMatVecTask(DPx[r] [c],
H, hH[c],
Tx, hTx[r]));

36

Computing Required Versions

Computing Required Versions:
» Handle knows next-required-version for each access type
» When task is added:

» The task asks the handles for which version to require
» The handles update the next-required-version
for accesses that cannot be reordered

Handle x: next read 0
next write 0

taskA(read x); // require x version 0

Handle x: next read 0
next write 1

taskB(read x); // require x version O

Handle x: next read 0
next write 2

taskC(write x); // require x version 2

Handle x: next read 3
next write 3

Extensions

Possible to define other access types

Example
Access Types Example Graph
read: Reorderable, not exclusive iiid * (read)
X

write: Not reorderable add x @t@
add: Reorderable, exclusive USRS <3

. mult x @ @
mult: Reorderable, exclusive D 5
Example
Access Types Example Graph
read: Reorderable, not exclusive read @;é@
write: Not reorderable conc x onc
concurrent: Reorderable, not exclusive conc x

write x @

Limitations

Limitation: Can only reorder accesses of same type.

Example: read, write, sort, sum
Can be reordered: Example Graph
> read - read :dex (read) (read)

> read - sum e @m-Cord)
> sort - sum write x @

» Sort must wait for both reads to finish

Sort need not wait for the sum task
» = Not enough to count the number of executed tasks

v

This requires more than one version counter per handle.

Allow exclusive accesses to same handle to run concurrently.

v

First task writes directly to destination

v

If destination is busy, writes to temporary storage

v

Reuse existing temporary storages, if one exists

v

Temporary storages are merged:

» Before executing a task with read access to the handle
» When attaching a temporary storage and one already exist

Properties
> Use as few buffers as possible
> Allow parallel merge

» Good locality

40

The Add Access Type

Example: Calculate forces between all pairs of particles.

// for each pair (i, j)
for (int i = 0; i < N; i++)
for (int j = i+l; j < N; j++)

force = calcForce(i, j);
A[i] += force;
A[j] -= force;

» Order does not matter

» Two tasks cannot write to
same memory concurrently

41

The Add Access Type

Example: Calculate forces between all pairs of particles.

// for each pair (i, j)

for (int i = 0; i < Nj; i++)
for (int j = i+1; j < N; j+4)

force = calcForc i

ALl += force; No parallelism

A[j] -= force;

» Order does not matter

» Two tasks cannot write to
same memory concurrently

41

Execution Traces: Benefit of Add Accesses

7i | | [0 OO OO ani0 o
efili00m oom OO OO o o g
. < 5{ 11 0 OO O T OO Q00 0 §
Write: S 41 [000 J]I IO OO T AT 00 0 |
'.'§3|||]] (T OO T OO O OO T (ol (i
2l | [M OO OO OO 000G 0
1] III I] [HDD[]]]]]]]I]]]]]I]]]II]]][H[[I]]]ID]]]]]]]I[]]]]]]]]]]]]]][HHJ Ol I
0.0 0.2 0.4 0.6 0.8 1.0
o S I LT T T T T T
Add: III | LTI T
£ 3| | [T I T T T T
2HIIIIIIIIIIIIIHIIIIIIIIIIIIIIH [T T TCCIITITCN

0.0 0 2 0.4 0 6 0.8 1.0
Time

N-body simulation, 8192 particles, 512 per block, 4 time steps.

42

#include "tasklib.hpp"
#include "options/defaults.hpp"
#include "options/prioscheduler.hpp"

// Custom handle type to include indices
template<typename Options>
struct MyHandle : public Handle_<Options> {
size_t i, j;
void set(size_t i_, size_t j_) { i =i_; j=j_; }
size_t geti() { return i; }
size_t getj() { return j; }
};

struct Options : public DefaultOptions<Options> {
typedef MyHandle<Options> HandleType; // Override handle type
typedef PrioScheduler<Options> Scheduler; // Override scheduler
typedef Enable TaskPriorities; // Enable task priorities

};

43

struct gemm : public Task<Optioms, 3> {

gemm (Handle<Options> &hl, Handle<Options> &h2,
Handle<Options> &h3) {
// register data accesses to manage, with direction
registerAccess(ReadWriteAdd: :read, &hl);
registerAccess(ReadWriteAdd: :read, &h2);
registerAccess(ReadWriteAdd: :add, &h3);

}

void run() {
Handle<Options> &hl(getAccess(0).getHandle());
Handle<Options> &h2(getAccess(1).getHandle());
Handle<Options> &h3(getAccess(2).getHandle());

double *a(Adatalhl->geti(O*DIM + hi->getj()1);
double *b(Adatal[h2->geti()*DIM + h2->getj()1);
double *c(Adata[h3->geti(D*DIM + h3->getj()1);

double DONE=1.0, DMONE=-1.0;

dgemm("N", "T", &nb, &nb, &nb, &DMONE, a, &nb, b, &nb,
¥
int getPriority() const { return 0; }

};

44

static void cholesky(const size_t numBlocks) {

// Start the system
ThreadManager<Options> tm;

// Create handles, and set the custom indices
Handle<Options> #*A = new Handle<Options>#*[numBlocks];
for (size_t i = 0; i < numBlocks; ++i) {
A[i] = new Handle<Options>[numBlocks];
for (size_t j = 0; j < numBlocks; ++j)
A[i1[j].set(i, j);
}

// Main code: Generate tasks
for (size_t j = 0; j < numBlocks; j++) {

for (size_t k = 0; k < j; k++)
for (size_t i = j+1; i < numBlocks; i++)

tm.addTask(new gemm(A[il[k], A[j][k], A[il1[j]), i);

for (size_t i = 0; i < j; i++)
tm.addTask(new syrk(A[j1[i], ALGI051), 3);

tm.addTask(new potrf(A[j1[3j1), j);
for (size_t i = j+1; i < numBlocks; i++)
tm.addTask(new trsm(A[j1[j1, A[i1[j1), j);
}

tm.barrier();

45

HTM Experiment: FEM Stiffness Matrix Assembly

Benchmark

Assembly of the stiffness matrix in a finite element scheme (2154 nodes).

» Two versions: many or few computations per triangle

> Scattered memory accesses spread over large address space

6
15 -- Ideal

T 141« Transactions|
v CAS

=a Locks

« - Transactions|
v~ CAS

= a Locks

PNWRUON0OORN

Number of threads

Transactions best when computation bound

Compare-and-swap best when memory bound

Locks slowest: One lock per element used

About 23 % of the transactions failed, most due to failed reads 46

vvyyy

N-Body Speedup on "Halvan”

64/ -- Ideal e]
— Compensated| ‘ ‘ el

% 8 16 24 32 40 48 56 64
#cores

N-Body simulation: 8192 particles, 128 per block, 4 time steps.
8 x Xeon X6550 = 8 x 8 cores

47

N-Body Speedup on "Halvan”

64t -- Ideal
— Compensated

% 8 16 24 32 40 48 56 64
#cores

N-Body simulation: 8192 particles, 128 per block, 4 time steps.
8 x Xeon X6550 = 8 x 8 cores

47

