
Uppsala Programming for Multicore
Architectures Research Center

Fast and Accurate Modeling of Instruction
Caches Using Instruction Reuse Profiles

Muneeb Khan, Andreas Sembrant and Erik Hagersten

1-Objective

Instruction cache behavior is important as it
can significantly affect performance

Simulation takes too long

We need a faster method to model application
instruction cache performance

Solution: statistical cache modeling

 0

 0.2

 0.4

 0.6

 0.8

 1

8kB+8kB

16kB+16kB

24kB+24kB

32kB+32kB

C
P

U
 t

h
ro

u
g

h
p

u
t

CPU throughput degrades by more
than 20% when two processes
contend equally for the instruction
cache on 2-way SMT Sandybridge

2-Method
 subl %ecx, %eax

 cmpl $0, %eax

 je gcd_done

 add %eax, %eax

 cmpl %ecx, %eax

 jmp gcd_alg
StatStack

(Cache Model)

Cache Size

Miss ratio

 subl %ecx, %eax

 cmpl $0, %eax

 je gcd_done

 add %eax, %eax

 cmpl %ecx, %eax

 jmp gcd_alg

Instruction reuse distance from the dynamic instruction stream is
sampled and fed to a Statistical cache model, which outputs Miss
ratio for arbitrary cache sizes

3-Reuse Sampling Methodology

ins 0 ins 1 ins 2 ins 3 ins 4 ins 5

ip

ins 0 ins 1 ins 2 ins 3 ins 4 ins 5

knowledgebase

ip2 ip3 ip4 ip5ip1

ip1,ip2,ip3,ip4,ip5

A

A

ins 0 ins 1 ins 2 ins 3 ins 4 ins 5

ip

single-step

ins 0 ins 1 ins 2 ins 3 ins 4 ins 5

ip single-step

ins 0 ins 1 ins 2 ins 3 ins 4 ins 5

timeA A

X X

Breakpoint setup Breakpoint cleanup

X X

1

X

B B

(a) Application’s execution is stopped

periodically, and the current instruction

is sampled

(c) All instructions following

the current instruction until

the cache line boundary are

decoded; their addresses and

first bytes are saved in a hash table

(d) Case 1: We use ptrace library

to single-step the application

to execute exactly one instruction.

If the execution remains on the same

cache line a reuse of 1 is recorded

(e) Case 2: If after single-stepping

the execution goes to instruction in

some other cache line, then the

sampler sets breakpoints on all

instructions in the cache line. This

is done by overwriting the first bytes

of all instructions with a breakpoint.

The execution is then continued

(f) When control returns to sampled

cache line, it will hit a breakpoint

and stop the process’ execution.

The reuse is then recorded as the

number of instructions executed

since setting the breakpoints. The

breakpoints are then replaced with

the original first bytes from the hash

table and then execution is continued

(b) To set breakpoints on a

cache line, all the instructions

in the cache line must be known

cache line

4-Accuracy

1

2

3

4

5

6

1K 2K 4K 8K 16K 32K 64K

M
is

s
 R

a
ti
o

 (
\%

)

Cache Size

tonto (t) & povray (b)

1

2

3

4

5

6

1K 2K 4K 8K 16K 32K 64K

M
is

s
 R

a
ti
o

 (
\%

)

Cache Size

sjeng (t) & h264ref/base (b)

1

2

3

4

5

6

1K 2K 4K 8K 16K 32K 64K

M
is

s
 R

a
ti
o

 (
\%

)

Cache Size

xalan (t) & h264ref/main (b)

1

2

3

4

5

6

7

8

1K 2K 4K 8K 16K 32K 64K

M
is

s
 R

a
ti
o

 (
\%

)

Cache Size

omnetpp (t) & gcc (b)

I-Cache Model ReferenceI-Cache Model Reference

Average absolute error for the modeled
instruction cache miss ratio is 0.2%

5-Overhead

 0

 10

 20

 30

 40

 50

 60

 70

gcc/166

gcc/200

gcc/s04

gcc/scilab

h264ref/base

h264ref/m
ain

om
netpp

povray

sjeng

tonto
xalan

average

O
v
e

rh
e

a
d

 (
%

)

Average overhead amounts to 24%, whereas
simulation takes 1 week

6-Phase-Guided Profiling

 0 10
 20

 30
 40

 50
 60

 70

Time in Billions of Instructions

1K

2K

4K

8K

16K

32K

64K

C
a

c
h

e
 S

iz
e

Average

 0

 2

 4

 6

 8

 10

 12

M
is

s
 R

a
ti
o

 (
\%

)

A B C B D B E F A B CB D B E F
Phase

Low Miss-Ratio!

code fits in 8 kB cache

Phase C: High Miss-Ratio!

can be optimized for code size Average can be misleading

Sampling in context of program phases gives us instruction cache
performance over time

The heatmap shows the instruction cache miss ratio for gcc (SPEC
CPU2006 benchmark) over time

7-Phase-Guided Optimization

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100

C

M
is

s
 R

a
ti
o

 (
\%

)

Program Execution (\%)

Optimization for Speed (O3)
Optimization for Size (Os)

Phase Guided Optimization

Miss-Ratio reduced from

optimizing Phase C

Compile phase C with -Os

Compile the rest with -O3

Results in ∼50% lower miss ratio in phase C

Department of Information Technology, Uppsala University http://it.uu.se/

