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1-Objective

Instruction cache behavior is important as it
can significantly affect performance

Simulation takes too long

We need a faster method to model application
instruction cache performance

Solution: statistical cache modeling
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CPU throughput degrades by more
than 20% when two processes
contend equally for the instruction
cache on 2-way SMT Sandybridge

2-Method
    subl    %ecx, %eax

    cmpl   $0, %eax

    je        gcd_done  

    add     %eax, %eax

    cmpl    %ecx, %eax     

    jmp     gcd_alg
StatStack

(Cache Model)

Cache Size

Miss ratio

    subl    %ecx, %eax

    cmpl   $0, %eax

    je        gcd_done  

    add     %eax, %eax

    cmpl    %ecx, %eax

    jmp     gcd_alg

Instruction reuse distance from the dynamic instruction stream is
sampled and fed to a Statistical cache model, which outputs Miss
ratio for arbitrary cache sizes

3-Reuse Sampling Methodology
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(a) Application’s execution is stopped 

periodically, and the current instruction

is sampled 

(c) All instructions following

the current instruction until

the cache line boundary are 

decoded; their addresses and

first bytes are saved in a hash table

(d) Case 1: We use ptrace library

to single-step the application

to execute exactly one instruction.

If the execution remains on the same

cache line a reuse of 1 is recorded

(e) Case 2: If after single-stepping 

the execution goes to instruction in

some other cache line, then the

sampler sets breakpoints on all

instructions in the cache line. This

is done by overwriting the first bytes

of all instructions with a breakpoint.

The execution is then continued

(f) When control returns to sampled

cache line, it will hit a breakpoint

and stop the process’ execution.

The reuse is then recorded as the

number of instructions executed

since setting the breakpoints. The

breakpoints are then replaced with

the original first bytes from the hash

table and then execution is continued

(b) To set breakpoints on a

cache line, all the instructions

in the cache line must be known

cache line

4-Accuracy
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tonto (t) & povray (b)
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sjeng (t) & h264ref/base (b)

1

2

3

4

5

6

1K 2K 4K 8K 16K 32K 64K

M
is

s
 R

a
ti
o

 (
\%

)

Cache Size

xalan (t) & h264ref/main (b)
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omnetpp (t) & gcc (b)

I-Cache Model ReferenceI-Cache Model Reference

Average absolute error for the modeled
instruction cache miss ratio is 0.2%

5-Overhead
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Average overhead amounts to 24%, whereas
simulation takes 1 week

6-Phase-Guided Profiling
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Phase

Low Miss-Ratio!

code fits in 8 kB cache

Phase C: High Miss-Ratio!

can be optimized for code size Average can be misleading

Sampling in context of program phases gives us instruction cache
performance over time

The heatmap shows the instruction cache miss ratio for gcc (SPEC
CPU2006 benchmark) over time

7-Phase-Guided Optimization
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Phase Guided Optimization

Miss-Ratio reduced from

optimizing Phase C

Compile phase C with -Os

Compile the rest with -O3

Results in ∼50% lower miss ratio in phase C
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