UP/\V\ARC

Programming Model

Motivation

e Fine-grained parallelism is required for performance
e Need simpler abstractions
e Abstractions must support expressiveness

Programming Model

e The program is divided up into tasks
e Tasks are annotated with which data they need
e Dependencies are deduced from these annotations

Tasks depend on data,
not on other tasks

Data Versions

e Versions of task parameters specify dependencies
e More expressive than a DAG
e A task requires a certain version to run

8 tasks accessing the same handle x:

read x|, [read x|, |modify x|, |add x|, |add x|, |add x|, |modify X

Requires version O
(Run all af once)

Requires version 2

Requires version 3
(Any order)
(One af the time)

-
4 AY
4 Ay
4 Ay

Requires version 6

Graph View

Distributed Memory Implementation

e All shared data is distributed over the nodes
e Remote data is requested by listeners

e When the requested versions become ready,
data is sent to all requesting nodes

e Communication is non-blocking
e Viewed as state machine to handle async events

Dependency-Aware Parallel Tasks

Afshin Zafari, Martin Tillenius, Elisabeth Larsson

Experiment: Dependencies

Experiment: Cholesky factorization, as an example of
non-trivial dependencies.

| | | |
dddds

Thread
=R EEENNNNNW

ONPOOONPLOON SO0

1000 2000 3000 4000 5000
Time [million cycles]

-

Figure 1: Execution trace of a Cholesky factorization of
32x32 blocks, executed on 32 cores. Each triangle rep-
resents a task working on blocks of 256x256 elements.
Each task is a call to Intel’s Math Kernel Library (MKL).

Speedup: 28.2x on 32 cores, compared to a sin-
gle MKL call. MKL also has parallel Cholesky, but only
achieved 21.1x. MKL might not be optimized for the AMD
Bulldozer system this experiment was run on.

Experiment: Scalability

Experiment: Find what task granularity Is required
for scaling. We avoid effects from shared resources by
executing tasks that only delay for a specific time.

—— —— w2

o dooocasow| et T kel 2
56[| — 500k (220us) | 0k (8.8)

— 200k (90us) Lo 6/ — ox S L AT
A48/ — 100k (45us) | e A L || Sk(z‘z' “)3’ W/
o — 50k (22us) o= 7 | S| 2ps W
3 B T LV ; “'T """""""" g .
340 20k (o G | R 2k (8801 7“4
O 32H — 10k (5us) |y P B SO o4l — ns N
o 4 g P : : . . . ; :
D L= 1k (50005) g | a2

T AN o N i S S
16 o S e e S

: 2_ :
8_ ‘ .. ;

L | L

0 8 1 24 32 40 48 56 64 1 2 3 4 5 §) 7/ 8

#cores #cores

Figure 2: Scaling for different task granularities on
(Left) 4 x 16 core AMD and (Right) 2 x 4 core Intel.

On 64 cores; tasks need to take ~500,000 cycles.
On 8 cores; tasks need to take ~20,000 cycles.

Sey

P

UPPSALA
UNIVERSITET

Experiment: Distributed Memory

Experiment: Assembly of a matrix, to be used in a par-
tial differential equations solver.

15
14
13|
12|

=
=

-
o

Node

ORLNWDULO OO

2000 3000 4000
Time [million cycles]

r
I——M (AR

0 100

Figure 3: Execution trace from running on 16 nodes
with 8 cores each. The matrix Is divided into 16,384
blocks 0of 512x512 elements. Each task writes one block.

Task color meaning

Green: Calculation Blue: MPI barrier
Cyan: Create tasks Red: MPI receive
Grey: Other Orange: MPI initiate start

Speedup: 97.7x on 128 cores (over best serial speed)

Conclusions

Tasks give easy access to performance

Acknowledgements

Thanks to Kostis Sagonas for providing access the 64 core ma-
chine used in parts of the experiments. The other computa-
tions were performed on the Tintin cluster provided by SNIC
through UPPMAX under project p2009014.

