
Uppsala Programming for
Multicore Architectures
Research Center

Dependency-AwareParallelTasks
Afshin Zafari, Martin Tillenius, Elisabeth Larsson

Programming Model
Motivation

� Fine-grained parallelism is required for performance
� Need simpler abstractions
� Abstractions must support expressiveness

Programming Model
� The program is divided up into tasks
� Tasks are annotated with which data they need
� Dependencies are deduced from these annotations

Tasks depend on data,
not on other tasks

Data Versions
� Versions of task parameters specify dependencies
� More expressive than a DAG
� A task requires a certain version to run

Example
8 tasks accessing the same handle x:

read x , read x , modify x , add x , add x , add x , modify x

read read
Requires version 0
(Run all at once)

modify Requires version 2

add

add add

Requires version 3
(Any order)
(One at the time)

modify Requires version 6

read

modify

read

add

add add

modify

Graph View

Distributed Memory Implementation
� All shared data is distributed over the nodes
� Remote data is requested by listeners
� When the requested versions become ready,

data is sent to all requesting nodes
� Communication is non-blocking
� Viewed as state machine to handle async events

Experiment: Dependencies
Experiment: Cholesky factorization, as an example of
non-trivial dependencies.

0 1000 2000 3000 4000 5000
Time [million cycles]

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

Th
re

ad

Figure 1: Execution trace of a Cholesky factorization of
32×32 blocks, executed on 32 cores. Each triangle rep-
resents a task working on blocks of 256×256 elements.
Each task is a call to Intel’s Math Kernel Library (MKL).

Speedup: 28.2x on 32 cores, compared to a sin-
gle MKL call. MKL also has parallel Cholesky, but only
achieved 21.1x. MKL might not be optimized for the AMD
Bulldozer system this experiment was run on.

Experiment: Scalability
Experiment: Find what task granularity is required
for scaling. We avoid effects from shared resources by
executing tasks that only delay for a specific time.

0 8 16 24 32 40 48 56 64
#cores

0
8

16
24

32
40
48
56
64

Sp
ee

du
p

Ideal
1000k (450µs)
500k (220µs)
200k (90µs)
100k (45µs)
50k (22µs)
20k (9µs)
10k (5µs)
1k (500ns)

1 2 3 4 5 6 7 8
#cores

1

2

3

4

5

6

7

8

Sp
ee

du
p

Ideal
100k (44µs)
50k (22µs)
20k (8.8µs)
10k (4.4µs)
5k (2.2µs)
2k (880ns)
1k (440ns)

Figure 2: Scaling for different task granularities on
(Left) 4 × 16 core AMD and (Right) 2 × 4 core Intel.

On 64 cores; tasks need to take ∼500,000 cycles.
On 8 cores; tasks need to take ∼20,000 cycles.

Experiment: Distributed Memory
Experiment: Assembly of a matrix, to be used in a par-
tial differential equations solver.

0 1000 2000 3000 4000 5000
Time [million cycles]

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

No
de

Figure 3: Execution trace from running on 16 nodes
with 8 cores each. The matrix is divided into 16,384
blocks of 512×512 elements. Each task writes one block.

Task color meaning
Green: Calculation Blue: MPI barrier
Cyan: Create tasks Red: MPI receive
Grey: Other Orange: MPI initiate start

Speedup: 97.7x on 128 cores (over best serial speed)

Conclusions

Tasks give easy access to performance

Acknowledgements
Thanks to Kostis Sagonas for providing access the 64 core ma-
chine used in parts of the experiments. The other computa-
tions were performed on the Tintin cluster provided by SNIC
through UPPMAX under project p2009014.


