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Programming Model

Motivation

e Fine-grained parallelism is required for performance
e Need simpler abstractions
e Abstractions must support expressiveness

Programming Model

e The program is divided up into tasks
e Tasks are annotated with which data they need
e Dependencies are deduced from these annotations

Tasks depend on data,
not on other tasks

Data Versions

e Versions of task parameters specify dependencies
e More expressive than a DAG
e A task requires a certain version to run

8 tasks accessing the same handle x:

read x|, [read x|, |modify x|, |add x|, |add x|, |add x|, |modify X

Requires version O
(Run all af once)

Requires version 2

Requires version 3
(Any order)
(One af the time)
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Requires version 6

Graph View

Distributed Memory Implementation

e All shared data is distributed over the nodes
e Remote data is requested by listeners

e When the requested versions become ready,
data is sent to all requesting nodes

e Communication is non-blocking
e Viewed as state machine to handle async events

Dependency-Aware Parallel Tasks

Afshin Zafari, Martin Tillenius, Elisabeth Larsson

Experiment: Dependencies

Experiment: Cholesky factorization, as an example of
non-trivial dependencies.
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Figure 1: Execution trace of a Cholesky factorization of
32x32 blocks, executed on 32 cores. Each triangle rep-
resents a task working on blocks of 256x256 elements.
Each task is a call to Intel’s Math Kernel Library (MKL).

Speedup: 28.2x on 32 cores, compared to a sin-
gle MKL call. MKL also has parallel Cholesky, but only
achieved 21.1x. MKL might not be optimized for the AMD
Bulldozer system this experiment was run on.

Experiment: Scalability

Experiment: Find what task granularity Is required
for scaling. We avoid effects from shared resources by
executing tasks that only delay for a specific time.
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Figure 2: Scaling for different task granularities on
(Left) 4 x 16 core AMD and (Right) 2 x 4 core Intel.

On 64 cores; tasks need to take ~500,000 cycles.
On 8 cores; tasks need to take ~20,000 cycles.
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Experiment: Distributed Memory

Experiment: Assembly of a matrix, to be used in a par-
tial differential equations solver.
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Figure 3: Execution trace from running on 16 nodes
with 8 cores each. The matrix Is divided into 16,384
blocks 0of 512x512 elements. Each task writes one block.

Task color meaning

Green: Calculation Blue: MPI barrier
Cyan: Create tasks Red: MPI receive
Grey: Other Orange: MPI initiate start

Speedup: 97.7x on 128 cores (over best serial speed)

Conclusions

Tasks give easy access to performance
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