
In
fo

rm
at

io
ns

te
kn

ol
og

i
 A Task-Based Parallel Programming Framework

with Modularity, Scalability and Adaptability
Features

Division of Scientific Computing, IT Department

Uppsala University, Sweden

Afshin Zafari, Martin Tillenius, Elisabeth Larsson
February 2014

In
fo

rm
at

io
ns

te
kn

ol
og

i
In

fo
rm

at
io

ns
te

kn
ol

og
i

Outline
• Task Based Parallel Programs
• Our frameworks

– Dependencies and Scheduling
– Configuration
– Execution

• Experiments
• Conclusions

2

In
fo

rm
at

io
ns

te
kn

ol
og

i
In

fo
rm

at
io

ns
te

kn
ol

og
i

Task based parallel programming

• Program = <Operations , Operands>
• Algorithm := <Tasks , Data>
• Tasks := <Operations, In/Out Data>
• {Tasks} , {Data}  Scheduler  Run tasks in

parallel
• Kernels: Actual computations
• SuperGlue and DuctTeip frameworks

– (www.it.uu.se/research/scicomp/software/superglue)

3

In
fo

rm
at

io
ns

te
kn

ol
og

i
In

fo
rm

at
io

ns
te

kn
ol

og
i

Data in DuctTeip framework

• Processors are aligned in a virtual grid
• Data are partitioned in large/small scales
• Large data  communication
• Small data  computations
• Separate tasks for large/small data
• Efficient storage

4

In
fo

rm
at

io
ns

te
kn

ol
og

i
In

fo
rm

at
io

ns
te

kn
ol

og
i

Data Versions
• Task-data dependency
• Data has versions
• Versions incremented

after any access
• When versions of all

read/write data are
ready, task can run
 • All ready tasks can run in parallel

Task 1

D1 D2 D3

read write

Task 2 read write

Task 3 read write

Task 4 read write

Task 5 read

Task 6 read write

5

In
fo

rm
at

io
ns

te
kn

ol
og

i
In

fo
rm

at
io

ns
te

kn
ol

og
i

Data Versions

0

1

2

3

4

5

Task 1

D1 D2 D3

read write

Task 2 read write

Task 3 read write

Task 4 read write

Task 5 read

Task 6 read write

• Task-data dependency
• Data has versions
• Versions incremented

after any access
• When versions of all

read/write data are
ready, task can run
 • All ready tasks can run in parallel

6

In
fo

rm
at

io
ns

te
kn

ol
og

i
In

fo
rm

at
io

ns
te

kn
ol

og
i

Distributed Environments

• Request for remote data
 listener

• Data owner sends
requested version of
data, when it’s ready

A00

A8x8

Nodeb

Nodec

• Versions upgraded after listeners replied
• Duplicate listeners are replied once
• Requesters can handle many data and

versions (D1v1 D2v1 D3v1 D1v2 …)

Nodea

A00 ,v1

7

In
fo

rm
at

io
ns

te
kn

ol
og

i
In

fo
rm

at
io

ns
te

kn
ol

og
i

How to use DuctTeip framework

• Configurations
– Process grid (1D,2D,3D,…)
– Two-level data partitioning: row/col/block cyclic
– Row/col major ordering of data (e.g. for BLAS)
– Who reads and who runs tasks: all/some/one

• User Program
– Taskifies Algorithms
– Implements kernels

8

In
fo

rm
at

io
ns

te
kn

ol
og

i
In

fo
rm

at
io

ns
te

kn
ol

og
i

SuperGlue

User Program

DuctTeip

How DuctTeip works
• Administration

– Tracking versions
– Handling tasks, listeners

• Communication
– tasks, listeners, data

• Execution
– Submitting smaller tasks to

SuperGlue framework

Communication

Administration

Task submission

Small tasks
submission

Execute small
tasks in parallel

9

In
fo

rm
at

io
ns

te
kn

ol
og

i
In

fo
rm

at
io

ns
te

kn
ol

og
i

SuperGlue

User Program

DuctTeip

How DuctTeip works
• Administration

– Tracking versions
– Handling tasks, listeners

• Communication
– tasks, listeners, data

• Execution
– Submitting smaller tasks to

SuperGlue framework

Communication

Administration

Task submission

Small tasks
submission

Execute small
tasks in parallel

10

In
fo

rm
at

io
ns

te
kn

ol
og

i
In

fo
rm

at
io

ns
te

kn
ol

og
i

Experiments

• Cholesky algorithm
1. ScaLAPACK

– pgi 2013 + acml
– openmpi 1.6.5
– scalapack 2.0.2

2. DuctTeip
– Intel 13.1 + acml
– openmpi 1.6

• UPPMAX Cluster
– 166 Nodes
– 2 Sockets/Node
– 8 Cores/Socket
– AMD 6220,3.0GHz
– 32 GB RAM/Node
– QDR Infiniband

11

Software Hardware

In
fo

rm
at

io
ns

te
kn

ol
og

i
In

fo
rm

at
io

ns
te

kn
ol

og
i

Results – Execution Time

12

• 110 Large Tasks
• Overhead: 10%

• 202 Large Tasks
• Overhead: 3%

DuctTeip

SuperGlue

• Matrix Size : 1420802 , Process Grid:5x2

• 1540 Large Tasks, 43,680,640 GEMM

In
fo

rm
at

io
ns

te
kn

ol
og

i
In

fo
rm

at
io

ns
te

kn
ol

og
i

Results – Communication

13

In
fo

rm
at

io
ns

te
kn

ol
og

i
In

fo
rm

at
io

ns
te

kn
ol

og
i

Results – Communication

14

In
fo

rm
at

io
ns

te
kn

ol
og

i
In

fo
rm

at
io

ns
te

kn
ol

og
i

Results – Strong Scaling

15

In
fo

rm
at

io
ns

te
kn

ol
og

i
In

fo
rm

at
io

ns
te

kn
ol

og
i

Results – Weak Scaling

16

In
fo

rm
at

io
ns

te
kn

ol
og

i
In

fo
rm

at
io

ns
te

kn
ol

og
i

Conclusion
• A Framework with:

– Low Overhead
– Scalability
– Flexibility

• Hybrid Parallel (Shared/Distributed Memory)
• Hierarchical (two levels)

– Modularity
• Decoupled processes

– Adaptability
• Specific task, data objects

17

	 A Task-Based Parallel Programming Framework with Modularity, Scalability and Adaptability Features
	Outline
	Task based parallel programming
	Data in DuctTeip framework
	Data Versions
	Data Versions
	Distributed Environments
	How to use DuctTeip framework
	How DuctTeip works
	How DuctTeip works
	Experiments
	Results – Execution Time
	Results – Communication
	Results – Communication
	Results – Strong Scaling
	Results – Weak Scaling
	Conclusion

