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Outline 
• Task Based Parallel Programs 
• Our frameworks 

– Dependencies and Scheduling 
– Configuration 
– Execution 

• Experiments 
• Conclusions 

2 



In
fo

rm
at

io
ns

te
kn

ol
og

i 
In

fo
rm

at
io

ns
te

kn
ol

og
i 

Task based parallel programming 

• Program = <Operations , Operands> 
• Algorithm := <Tasks , Data> 
• Tasks := <Operations, In/Out Data> 
• {Tasks} , {Data}  Scheduler  Run tasks in 

parallel 
• Kernels: Actual computations  
• SuperGlue and DuctTeip frameworks 

– (www.it.uu.se/research/scicomp/software/superglue) 
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Data in DuctTeip framework  

• Processors are aligned in a virtual grid 
• Data are partitioned in large/small scales 
• Large data  communication 
• Small data  computations 
• Separate tasks for large/small data 
• Efficient storage 
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Data Versions 
• Task-data dependency 
• Data has versions 
• Versions incremented 

after any access 
• When versions of all 

read/write data are 
ready, task can run 
 • All ready tasks can run in parallel 
 

Task 1 

D1 D2 D3 

read write 

Task 2 read write 

Task 3 read write 

Task 4 read write 

Task 5 read 

Task 6 read write 
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Data Versions 
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Task 1 

D1 D2 D3 

read write 

Task 2 read write 

Task 3 read write 

Task 4 read write 

Task 5 read 

Task 6 read write 

• Task-data dependency 
• Data has versions 
• Versions incremented 

after any access 
• When versions of all 

read/write data are 
ready, task can run 
 • All ready tasks can run in parallel 
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Distributed Environments 

• Request for remote data 
 listener 

• Data owner sends 
requested version of 
data, when it’s ready 

A00 

A8x8 

Nodeb  

Nodec  

• Versions upgraded after listeners replied 
• Duplicate listeners are replied once 
• Requesters can handle many data and 

versions  (D1v1   D2v1  D3v1    D1v2  …)  
 

Nodea  

A00 ,v1 
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How to use DuctTeip framework 

• Configurations 
– Process grid (1D,2D,3D,…) 
– Two-level data partitioning: row/col/block cyclic 
– Row/col major ordering of data (e.g. for BLAS) 
– Who reads and who runs tasks: all/some/one 

• User Program 
– Taskifies Algorithms 
– Implements kernels 
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SuperGlue 

User Program 

DuctTeip 

How DuctTeip works 
• Administration 

– Tracking versions 
– Handling tasks, listeners 

• Communication 
–  tasks, listeners, data  

• Execution 
– Submitting smaller tasks to 

SuperGlue framework 

Communication 

Administration 

Task submission 

Small tasks 
submission 

Execute small 
tasks in parallel 
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SuperGlue 

User Program 

DuctTeip 

How DuctTeip works 
• Administration 

– Tracking versions 
– Handling tasks, listeners 

• Communication 
–  tasks, listeners, data  

• Execution 
– Submitting smaller tasks to 

SuperGlue framework 

Communication 

Administration 

Task submission 

Small tasks 
submission 

Execute small 
tasks in parallel 
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Experiments 

• Cholesky algorithm 
1. ScaLAPACK 

– pgi 2013 + acml 
– openmpi 1.6.5 
– scalapack 2.0.2 

2. DuctTeip 
– Intel 13.1 + acml 
– openmpi 1.6 

• UPPMAX Cluster 
– 166 Nodes 
– 2 Sockets/Node 
– 8 Cores/Socket 
– AMD 6220,3.0GHz 
– 32 GB RAM/Node 
– QDR Infiniband 
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Results – Execution Time 
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• 110 Large Tasks 
• Overhead: 10% 
 

• 202 Large Tasks 
• Overhead: 3% 
 

DuctTeip 

SuperGlue 

• Matrix Size : 1420802  , Process Grid:5x2 

• 1540 Large Tasks, 43,680,640 GEMM 
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Results – Communication 
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Results – Communication  
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Results – Strong Scaling 
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Results – Weak Scaling 
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Conclusion 
• A Framework with: 

– Low Overhead 
– Scalability 
– Flexibility 

• Hybrid Parallel (Shared/Distributed Memory) 
• Hierarchical (two levels) 

– Modularity 
• Decoupled processes 

– Adaptability 
• Specific task, data objects 
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