
Toward a Unified Task-based

Parallel Programming Interface (UTP)
Afshin Zafari, Elisabeth Larsson

IT Department, Division of Scientific Computing

Toward a Unified Task-based

Parallel Programming Interface (UTP)
Afshin Zafari, Elisabeth Larsson

IT Department, Division of Scientific Computing

A sample GEMM program

int main(int argc , char **argv)

{

utp_initialize(argc ,argv); // UTP start

int M = config.getYDimension (); // Get parameters

int B1 = config.getYBlocks (1);

int B2 = config.getYBlocks (2);

GData A(M,M),B(M,M),C(M,M); // Define Data

GPartitioner P1(B1,B1);

GPartitioner P2(B2,B2); // Define Partitions

P1 ->set_next(P2); // two levels of partitions

A.set_partition(P1); // Apply partitioninng on data

B.set_partition(P1);

C.set_partition(P1);

ugemm(A,B,C); // Call unified GEMM on data

utp_finalize (); // UTP waits for all tasks

}

ugemm

void ugemm(GData &A,GData &B,GData &C,GTask *p=NULL){

int m = A.get_part_countY ();

int n = B.get_part_countX ();

int o = C.get_part_countX ();

for (int i = 0; i < m; i++)

for (int j = 0; j < n; j++)

for (int k = 0; k < o; k++)

ugemm_t(A(i,k),B(k,j),C(i,j),p);

}

void ugemm_t(GData &A,GData &B,GData &C,GTask *p){

packArgs(args , A , B , C);

packAxs (axs , In , In , InOut);

get_dispatcher ()->submit_task(ugemmo ,args ,axs ,p);

}

void ugemmo ::split(GTask *t){

// unpack arguments of t to A,B,C: A = t->args [0] ,...

ugemm(A,B,C,t);

}

Which scheduler or framework?

– Wrappers translate framework interfaces to the unified interface.

– BLAS and cuBLAS wrappers used as schedulers that run kernels.

– Message Queue (MQ) Scheduler

– puts the commands received from Dispatcher to a public queue.

– gets messages from a public queue and sends them to Dispatcher.

More information?

Search in the www.it.uu.se for the keywords Unified
Interface, Task Based Parallel Programming,
Programming Frameworks or scan this:

What is it?

•Provides a unified programming interface for
task based parallel programming.

•Enables different task-based frameworks
to cooperate without knowing each other.

•Enables a program written once in sequential
form to run in parallel on different types of
computing resources.

Generic Objects

•Generic Data
M, N, memory, lead_dim, partition,

parent, level

•Generic Partition
MB, NB, parent, get_part(i,j)

•Generic Task
Operation, parent, args[], access[],

level, kernel

•Generic Operation
f (x, y) 7→ {tasks (xij, yk`)}
•Generic Scheduler
submit(), run(), finished()

Notifications (ready and finished)

•Dispatch Policy
Used for customizing the chain of schedulers

•Dispatcher
submit(), run(), finished()

Central hub of schedulers conversations.

How does it work?

– Resulting tasks of calling an Operation are sub-
mitted to Schedulers via Dispatcher.

– Ready task at any level of the hierarchy splits
again using the corresponding Operations.

– Tasks at the finest level run and when finished,
Schedulers at higher levels get notified.

Task and Data Hierarchy

f (x1, x2, . . .)

t1
1

t2
1 t2

2

t1
2

t2
3 t2

4 t2
5

t1
3

t2
6 t2

n

. . .

xi

xi,jk

t`m: task m at level `
xi,jk: partition jk of xi

Where do the tasks run?

The configuration of computing resources can be
determined at run time.

run ugemm_app

--cores <multi-core configuration>

--gpus <gpu configuration>

--nodes <dist. mem. configuration>

--cloud <cloud configuration>

--cluster <cluster configuration>

Configuration Sample

Application programs
that use Unified Task
Interface can run on
cluster, cloud and client
computers. Using MQ
Scheduler, all instances
of UTP programs can
communicate tasks and
data with each other.

Why to use it?

• Independent from frameworks

•Transparent to new technologies in the under-
lying hardware

•Decoupled application programming

•Mixing different frameworks

• Single application program for any available
parallelism

•New features in any framework become available
to all application programs (e.g. DLB)

•Customized schedulers and dispatch policies
can implement new work-flows

