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Short Bio

Aliasing in OOPLs
(Pluggable) type systems
Concurrent and parallel programming
Dynamic programming languages
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Spaghetti Code
(~1968)
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Spaghetti Data
(present day)

Visualisation of a heap from an OO program

Thread A

Thread B

Races 
etc.

Object

Reference
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Capsule Summary

Spaghetti data + ubiquitous parallelism is a no-go

                — However, sharing state is key to performance!

Our goal

• Bring order to object-oriented data

Our approach

• Enable programmers to express sharing, locality, etc. 

• Use this information for checking and parallelisation

• Avoid problems (races, compositionality, etc.) by design 

(correctness) (efficency)
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Thread 1 Thread 2 Thread n

…

Shared heap

Thread-Local Heaps in Loci [ECOOP 2009]

+ Shared accesses
    identified 

+ Fine grained

+ Pluggable

+ Low syntactic
    overhead

– Shared heap 
    still a mess

– Locks are not 
    compositional 

1st

Proposal

Races 
etc.

http://loci.java.net/
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Active Object 1

Active Object 2

Active Object n

Immutable

Transferrable

(no races)

(no races)

(no access)

Isolated Active 
Objects in Joelle
[TOOLS 2008] + Compositional

+ No races

+ Low syntactic
    overhead

– Coarse grained

– No internal 
    parallelism

2nd 

Proposal
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The Way Forward: Our Core Design

Loci Joelle Joelle 2.0
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Ultimate Goals

• Replace Java as the safe mainstream programming language 

Simple & gradual system, legacy, do not ignore the programming craft…

• Deal with parallelism and concurrency better than Erlang

Efficiency, locality, migration, high-level errors only…

• Without compromising with object-orientation

Support shared mutable state as effortlessly as possible, encapsulation…
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Current Goals

• Avoid races, deadlocks, subtle memory model considerations

• Better utilise shared resources (caches, shared buffers, etc.) 

• Implicit parallelism where possible

• Facilitate manual and automated reasoning

• Language a superset of Java (or C++)

Interested industry: Ericsson, ABB, IBM, Oracle (no real committment from 
anyone yet)

Impact: OOPSLA 2010, ECOOP 2009, APLAS 2008, TOOLS 2008
(Community: sc IWACO ’07–11; is UPMARC summer school ’10; pc FTfJP ’11, IWACO 
’11, OOPSLA ’11, ECOOP ’12 je LNCS state-of-the-art aliasing in OOP Journal) 
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The Way Forward: Our Core Design

Loci Joelle Joelle 2.0

Ownership types Effect systems Alias Analysis Inference
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Fine-grained parallelism 
inside active objects

New!

Active object model is safe 
by design

Use run-time adaptation
techniques for performance
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Ownership types Effect systems Alias Analysis Inference

Preserve isolation

Static

Dynamic

Safe sharing

Safe transfer

Bring structure to active 
object subheap

Minimal clone operations

New!
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Ownership types Effect systems Alias Analysis Inference

Guarantee race freedom under sharing

Static

Dynamic

Fine-
grained 
sharing

Allow implicit parallelism

Scheduling to maximise cache utilisation

Prefetching from message 
queue analysis

New!
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Ownership types Effect systems Alias Analysis Inference

Static

Dynamic

Simplify coding with shared and 
unshared values

Improve effect analysis result

Compile fast-path and avoid 
synch to main memory

New!
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Ownership types Effect systems Alias Analysis Inference

Static

Dynamic

Lighten annotation burden

Facilitate reuse

Facilitate refactoring

New!
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Immediate UPMARC Synergy

Programs in our system exhibit strong properties that facilitate program analysis

• e.g., alias freedom, locality information, effects of expressions

• Previous work on verification @ UU could capitalise on this

Migrating legacy code to active objects

• Can it be done automatically? 

• Inference in isolated enclosures — a smaller problem?

• Maybe annotations can be partially inferred?

Ownership and effect information used for scheduling, resource management

Parosh 
Abdulla

Jonathan
Cederberg

David Black-SchafferWang Yi
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Obstacles & Some Open Questions

Need more ”warm bodies” (PhD students & PostDocs) 

Need representative legacy code (tentative from ABB)

What are the effects on common idioms and programming practises?

Inference vs. programmer annotations—what is a good balance? 

• Inference is flexible but brittle

• Annotations are stable but stale 

Will a single active object concept fit all circumstances? 

How to feedback that we cannot run something in parallel to the programmer? 

…
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Related Work (Excerpt)

Proactive, Scoop, Akka, etc. — active object systems for Java, 
Eiffel, Scala; no isolation guarantees, not for parallel programs

DPJ — share some ideas but for threads and task-based 
parallelism only; extreme programming overhead

X10 — captures where a computation takes place in the ”place 
type”

CoBoxes, JCoBoxes — similar ideas for encapsulation but 
completely dynamic

FlexoTask and StreamFlex — shares ideas for encapsulation but 
for stream programming

A wealth of systems for ownership types, linearity, effect 
systems (Clarke, Boyland, Noble, Vitek, Aldrich, Rinard, Liskov, …)

Ownership types inference work by Milanova et al., Ma & Foster

Jade — implicit parallelism; Futures; Erlang; …

Our Unique Footprint:

Flexible yet powerful
aliasing constraints; 
ownership-based effects;
2D rep splitting 

Active-object based

Combination of anno-
tations and inference; full 
static checking

Both coarse-grain (AO)
and fine-grain (task, etc.) 
parallelism

Run-time reliance on 
ownership and effects for 
scheduling and implicit
parallelism

Consider programming
surroundings & legacy
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Thank you! Questions?
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