
PL efforts in UPMARC
an excerpt

Tobias Wrigstad
assistant professor

onsdag den 11 maj 2011

’06 PhD @ Royal Inst. of Technology, Sweden
’07 Postdoc @ Purdue University, IN US
’09 Associate prof @ Stockholm University
’10 Assistant prof @ Uppsala University

Short Bio

Aliasing in OOPLs
(Pluggable) type systems
Concurrent and parallel programming
Dynamic programming languages

onsdag den 11 maj 2011

Spaghetti Code
(~1968)

onsdag den 11 maj 2011

Spaghetti Data
(present day)

Visualisation of a heap from an OO program

Thread A

Thread B

Races
etc.

Object

Reference

onsdag den 11 maj 2011

Capsule Summary

Spaghetti data + ubiquitous parallelism is a no-go

 — However, sharing state is key to performance!

Our goal

• Bring order to object-oriented data

Our approach

• Enable programmers to express sharing, locality, etc.

• Use this information for checking and parallelisation

• Avoid problems (races, compositionality, etc.) by design

(correctness) (efficency)

onsdag den 11 maj 2011

Thread 1 Thread 2 Thread n

…

Shared heap

Thread-Local Heaps in Loci [ECOOP 2009]

+ Shared accesses
 identified

+ Fine grained

+ Pluggable

+ Low syntactic
 overhead

– Shared heap
 still a mess

– Locks are not
 compositional

1st

Proposal

Races
etc.

http://loci.java.net/
onsdag den 11 maj 2011

Active Object 1

Active Object 2

Active Object n

Immutable

Transferrable

(no races)

(no races)

(no access)

Isolated Active
Objects in Joelle
[TOOLS 2008] + Compositional

+ No races

+ Low syntactic
 overhead

– Coarse grained

– No internal
 parallelism

2nd

Proposal

onsdag den 11 maj 2011

+ =

The Way Forward: Our Core Design

Loci Joelle Joelle 2.0

onsdag den 11 maj 2011

Ultimate Goals

• Replace Java as the safe mainstream programming language

Simple & gradual system, legacy, do not ignore the programming craft…

• Deal with parallelism and concurrency better than Erlang

Efficiency, locality, migration, high-level errors only…

• Without compromising with object-orientation

Support shared mutable state as effortlessly as possible, encapsulation…

onsdag den 11 maj 2011

Current Goals

• Avoid races, deadlocks, subtle memory model considerations

• Better utilise shared resources (caches, shared buffers, etc.)

• Implicit parallelism where possible

• Facilitate manual and automated reasoning

• Language a superset of Java (or C++)

Interested industry: Ericsson, ABB, IBM, Oracle (no real committment from
anyone yet)

Impact: OOPSLA 2010, ECOOP 2009, APLAS 2008, TOOLS 2008
(Community: sc IWACO ’07–11; is UPMARC summer school ’10; pc FTfJP ’11, IWACO
’11, OOPSLA ’11, ECOOP ’12 je LNCS state-of-the-art aliasing in OOP Journal)

onsdag den 11 maj 2011

+ =

The Way Forward: Our Core Design

Loci Joelle Joelle 2.0

Ownership types Effect systems Alias Analysis Inference

onsdag den 11 maj 2011

Fine-grained parallelism
inside active objects

New!

Active object model is safe
by design

Use run-time adaptation
techniques for performance

onsdag den 11 maj 2011

Ownership types Effect systems Alias Analysis Inference

Preserve isolation

Static

Dynamic

Safe sharing

Safe transfer

Bring structure to active
object subheap

Minimal clone operations

New!

onsdag den 11 maj 2011

Ownership types Effect systems Alias Analysis Inference

Guarantee race freedom under sharing

Static

Dynamic

Fine-
grained
sharing

Allow implicit parallelism

Scheduling to maximise cache utilisation

Prefetching from message
queue analysis

New!

onsdag den 11 maj 2011

Ownership types Effect systems Alias Analysis Inference

Static

Dynamic

Simplify coding with shared and
unshared values

Improve effect analysis result

Compile fast-path and avoid
synch to main memory

New!

onsdag den 11 maj 2011

Ownership types Effect systems Alias Analysis Inference

Static

Dynamic

Lighten annotation burden

Facilitate reuse

Facilitate refactoring

New!

onsdag den 11 maj 2011

Immediate UPMARC Synergy

Programs in our system exhibit strong properties that facilitate program analysis

• e.g., alias freedom, locality information, effects of expressions

• Previous work on verification @ UU could capitalise on this

Migrating legacy code to active objects

• Can it be done automatically?

• Inference in isolated enclosures — a smaller problem?

• Maybe annotations can be partially inferred?

Ownership and effect information used for scheduling, resource management

Parosh
Abdulla

Jonathan
Cederberg

David Black-SchafferWang Yi

onsdag den 11 maj 2011

Obstacles & Some Open Questions

Need more ”warm bodies” (PhD students & PostDocs)

Need representative legacy code (tentative from ABB)

What are the effects on common idioms and programming practises?

Inference vs. programmer annotations—what is a good balance?

• Inference is flexible but brittle

• Annotations are stable but stale

Will a single active object concept fit all circumstances?

How to feedback that we cannot run something in parallel to the programmer?

…

onsdag den 11 maj 2011

Related Work (Excerpt)

Proactive, Scoop, Akka, etc. — active object systems for Java,
Eiffel, Scala; no isolation guarantees, not for parallel programs

DPJ — share some ideas but for threads and task-based
parallelism only; extreme programming overhead

X10 — captures where a computation takes place in the ”place
type”

CoBoxes, JCoBoxes — similar ideas for encapsulation but
completely dynamic

FlexoTask and StreamFlex — shares ideas for encapsulation but
for stream programming

A wealth of systems for ownership types, linearity, effect
systems (Clarke, Boyland, Noble, Vitek, Aldrich, Rinard, Liskov, …)

Ownership types inference work by Milanova et al., Ma & Foster

Jade — implicit parallelism; Futures; Erlang; …

Our Unique Footprint:

Flexible yet powerful
aliasing constraints;
ownership-based effects;
2D rep splitting

Active-object based

Combination of anno-
tations and inference; full
static checking

Both coarse-grain (AO)
and fine-grain (task, etc.)
parallelism

Run-time reliance on
ownership and effects for
scheduling and implicit
parallelism

Consider programming
surroundings & legacy

onsdag den 11 maj 2011

Thank you! Questions?

onsdag den 11 maj 2011

