Mereologies in Computing Science

Uppsala: Thursday, 11 November 2010

Dines Bjørner

In this talk we solve the following problems:

- we give a formal model of a large class of mereologies,
 - with simple entities modelled as parts
 - and their relations by connectors;
- we show that that class applies to a wide variety of societal infrastructure component domains;
- we show that there is a class of **CSP** channel and process structures that correspond to the class of mereologies where
 - $-\operatorname{mereology}$ parts become \mathtt{CSP} processes and
 - connectors become channels;
 - and where simple entity attributes become process states.

- We have yet to prove to what extent the models satisfy
 - the axiom systems for mereologies of, for example, (Casati&Varzi 1999)
 - and a calculus of individuals (Bowman&Clarke 1981).
- Mereology is the study, knowledge and practice of part-hood relations:
 - $-\operatorname{of}$ the relations of part to whole and
 - the relations of part to part within a whole.
- By parts we shall here understand simple entities of the kind illustrated in this talk.

- Manifest simple entities of domains
 - are either continuous (fluid, gaseous)
 - $-\operatorname{or}$ discrete (solid, fixed), and if the latter, then
 - * either atomic
 - * or composite.
 - $-\operatorname{It}$ is how the sub-entities of a composite entity
 - * are "put together"
 - * that "makes up" a mereology of that composite entity
 - at least such as we shall study the mereology concept.
- In this talk we shall study some ways of modelling the mereology of composite entities.

• One way of modelling mereologies is using

- sorts,

- $-\operatorname{observer}$ functions and
- -axioms (McCarthy style),
- another is using **CSP**.

2. Introduction

2. Introduction 2.1. Physics and Societal Infrastructures 2.1.1. Physics

- **Physicists** study that of nature which can be measured
 - within us,
 - around us and
 - between 'within' and 'around'!
- To make mathematical models of physics phenomena,
 - physics has helped develop and uses mathematics,
 - notably calculus and statistics.

• **Domain engineers** primarily studies societal infrastructure components which can be

- reasoned about,
- -built and
- manipulated by humans.
- To make domain models of infrastructure components, domain engineering makes use of
 - formal specification languages,
 - their reasoning systems: formal testing, model checking and verification, and
 - their tools.

2.1.2. In Nature

- **Physicists** turns to algebra in order to handle structures in nature.
 - Algebra appears to be useful in a number of applications, to wit:
 * the abstract modelling of chemical compounds.
 - $-\operatorname{But}$ there seems to be many structures in nature
 - * that cannot be captured in a satisfactory way by mathematics, including algebra
 - * and when captured in discrete mathematical disciplines such as sets, graph theory and combinatorics
 - \cdot the "integration" of these mathematically represented structures
 - \cdot with calculus (etc.) becomes awkward;
 - \cdot well, I know of no successful attempts.

- **Domain engineers** turns to discrete mathematics
 - $-\operatorname{as}$ embodied in formal specification languages
 - $-\operatorname{and}$ as "implementable" in programming languages —
 - in order to handle structures in societal infrastructure components.
- These languages allow
 - -(a) the expression of arbitrarily complicated structures,
 - -(b) the evaluation of properties over such structures,
 - -(c) the "building & demolition" of such structures, and
 - -(d) the reasoning over such structures.
- \bullet They also allow the expression of dynamically varying structures
 - $-\operatorname{something}$ mathematics is "not so good at" !

- But the specification languages have two problems:
 - -(i) they do not easily, if at all,
 - * handle continuity, that is, they do not embody calculus,* or, for example, statistical concepts, etc.,

and

- -(ii) they handle
 - * actual structures of societal infrastructure components
 - \ast and attributes of atomic and composite entities of these –
- usually by identical techniques
- thereby blurring what we think is an important distinction.

2. Introduction 2.2. Structure of This Talk

2.2. Structure of This Talk

- The rest of the talk is organised as follows.
- First we give a first main, a meta-example,

 $-\operatorname{of}$ syntactic aspects of a class of mereologies.

- We informally show that the assembly/unit structures indeed model structures of a variety of infrastructure components.
- Then we discuss concepts of atomic and composite simple entities.

2. Introduction 2.2. Structure of This Talk

- We then "perform"
 - $-\,{\rm the}$ ontological trick of mapping the assembly and unit entities
 - $-\operatorname{and}$ their connections
 - $-\operatorname{exemplified}$ in the first main meta-example
 - $-\operatorname{into}$ CSP processes and channels, respectively —
 - the second and last main meta-example and now
 * of semantic aspects of a class of mereologies.

3. A Syntactic Model of a Class of Mereologies 3.1. Systems, Assemblies, Units

- We speak of systems as assemblies.
- From an assembly we can immediately observe a set of parts.
- Parts are either assemblies or units.
- We do not further define what assemblies and units are.

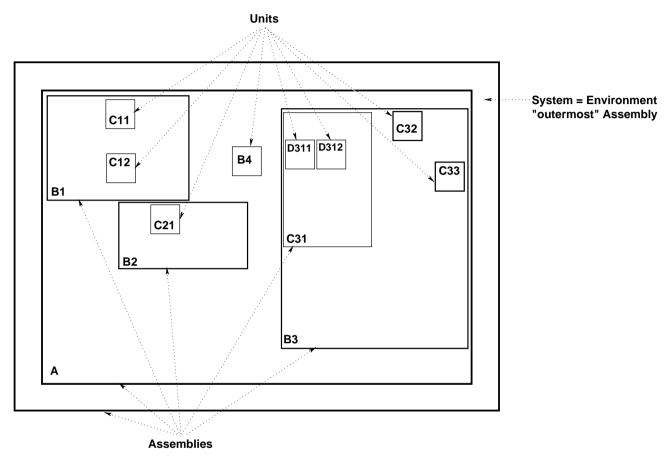
type

$$S = A, A, U, P = A \mid U$$

value

obs_Ps: $(S|A) \rightarrow P$ -set

- Parts observed from an assembly are said to be immediately embedded in, that is, within, that assembly.
- Two or more different parts of an assembly are said to be immediately **adjacent** to one another.



3. A Syntactic Model of a Class of Mereologies 3.1. Systems, Assemblies, Units

Figure 1: Assemblies and Units "embedded" in an Environment

- A system includes its environment.
- And we do not worry, so far, about the semiotics of all this !

3. A Syntactic Model of a Class of Mereologies 3.1. Systems, Assemblies, Units

- \bullet Given <code>obs_Ps</code> we can define a function, <code>xtr_Ps</code>,
 - which applies to an assembly $\boldsymbol{\mathsf{a}}$ and
 - which extracts all parts embedded in $\boldsymbol{\mathsf{a}}$ and including $\boldsymbol{\mathsf{a}}.$
- The functions **obs_Ps** and **xtr_Ps** define the meaning of embeddedness.

value

$$\begin{array}{l} xtr_Ps: \ (S|A) \rightarrow P\text{-set} \\ xtr_Ps(a) \equiv \\ \quad \text{let } ps = \{a\} \cup obs_Ps(a) \text{ in } ps \cup \text{union} \{xtr_Ps(a')|a':A \cdot a' \in ps\} \text{ end} \end{array}$$

• **union** is the distributed union operator.

3. A Syntactic Model of a Class of Mereologies 3.1. Systems, Assemblies, Units

- Parts have unique identifiers.
- All parts observable from a system are distinct.

type

AUI

value

```
obs\_AUI: P \rightarrow AUI
```

axiom

```
 \begin{array}{l} \forall \ a:A \cdot \\ \textbf{let} \ ps = obs\_Ps(a) \ \textbf{in} \\ \forall \ p',p'':P \cdot \{p',p''\} \subseteq ps \land p' \neq p'' \Rightarrow obs\_AUI(p') \neq obs\_AUI(p'') \land \\ \forall \ a',a'':A \cdot \{a',a''\} \subseteq ps \land a' \neq a'' \Rightarrow xtr\_Ps(a') \cap xtr\_Ps(a'') = \{\} \ \textbf{end} \end{array}
```

3.2. 'Adjacency' and 'Within' Relations

- Two parts, p,p', are said to be *immediately next to*, i.e.,
 i_next_to(p,p')(a), one another in an assembly a
 - if there exists an assembly, a' equal to or embedded in a
 - -such that p and p' are observable in that assembly a'.

value

i_next_to: P × P → A $\xrightarrow{\sim}$ **Bool**, **pre** i_next_to(p,p')(a): p≠p' i_next_to(p,p')(a) ≡ ∃ a':A · a'=a ∨ a' ∈ xtr_Ps(a) · {p,p'}⊆obs_Ps(a')

- \bullet One part, p, is said to be immediately within another part, $p^\prime {\rm in}$ an assembly a
 - if there exists an assembly, $\boldsymbol{a'}$ equal to or embedded in \boldsymbol{a}
 - such that p is observable in a'.

value

i_within: $P \times P \to A \xrightarrow{\sim} \textbf{Bool}$ i_within(p,p')(a) \equiv $\exists a': A \cdot (a=a' \lor a' \in xtr_Ps(a)) \cdot p'=a' \land p \in obs_Ps(a')$

- We can generalise the immediate 'within' property.
- A part, p, is (transitively) within a part p', within(p,p')(a), of an assembly, a,
 - -either if p, is immediately within p' of that assembly, a,
 - or if there exists a (proper) part $p^{\prime\prime}$ of p^\prime

 $-\operatorname{such}$ that within(p",p)(a).

value

within: $P \times P \to A \xrightarrow{\sim} \textbf{Bool}$ within $(p,p')(a) \equiv$ $i_within<math>(p,p')(a) \lor \exists p'': P \cdot p'' \in obs_Ps(p) \land within(p'',p')(a)$

- The function within can be defined, alternatively,
- \bullet using <code>xtr_Ps</code> and <code>i_within</code>
- \bullet instead of <code>obs_Ps</code> and <code>within</code> :

value

within': $P \times P \to A \xrightarrow{\sim} \textbf{Bool}$ within' $(p,p')(a) \equiv$ $i_within(p,p')(a) \lor \exists p'': P \cdot p'' \in xtr_Ps(p) \land i_within(p'',p')(a)$

lemma: within \equiv within'

3. A Syntactic Model of a Class of Mereologies 3.2. 'Adjacency' and 'Within' Relations 3.2.1. Transitive 'Adjacency'

3.2.1. Transitive 'Adjacency'

- We can generalise the immediate 'next to' property.
- Two parts, **p**, **p'** of an assembly, **a**, are adjacent if they are
 - $-\operatorname{either}$ 'next to' one another
 - or if there are two parts \mathbf{p}_o , \mathbf{p}'_o * such that \mathbf{p} , \mathbf{p}' are embedded in respectively \mathbf{p}_o and \mathbf{p}'_o * and such that \mathbf{p}_o , \mathbf{p}'_o are immediately next to one another.

value

adjacent:
$$P \times P \rightarrow A \xrightarrow{\sim} \textbf{Bool}$$

adjacent(p,p')(a) \equiv
 $i_next_to(p,p')(a) \lor$
 $\exists p'',p''':P \cdot \{p'',p'''\} \subseteq xtr_Ps(a) \land i_next_to(p'',p''')(a) \land$
 $((p=p'')\lor within(p,p'')(a)) \land ((p'=p''')\lor within(p',p''')(a))$

3. A Syntactic Model of a Class of Mereologies 3.3. Mereology, Part I

3.3. Mereology, Part I

- So far we have built a ground mereology model, $\mathcal{M}_{\mathcal{G}}$ round.
- Let \sqsubseteq denote parthood, x is part of y, $x \sqsubseteq y$.

$$\forall x (x \sqsubseteq x)^1 \tag{1}$$

$$\forall x, y(x \sqsubseteq y) \land (y \sqsubseteq x) \Rightarrow (x = y) \tag{2}$$

$$\forall x, y, z(x \sqsubseteq y) \land (y \sqsubseteq z) \Rightarrow (x \sqsubseteq z) \tag{3}$$

- Let \square denote proper parthood, x is part of y, $x \square y$.
- Formula 4 defines $x \sqsubset y$. Equivalence 5 can be proven to hold.

$$\forall x \sqsubset y =_{\operatorname{def}} x(x \sqsubseteq y) \land \neg(x = y) \tag{4}$$

$$\forall \forall x, y(x \sqsubseteq y) \quad \Leftrightarrow \quad (x \sqsubset y) \lor (x = y) \tag{5}$$

¹Our notation now is not RSL but some conventional first-order predicate logic notation.

[3. A Syntactic Model of a Class of Mereologies, 3.3. Mereology, Part I]

• The proper part $(x \sqsubset y)$ relation is a strict partial ordering:

$$\forall x \neg (x \sqsubset x) \tag{6}$$

$$\forall x, y(x \sqsubset y) \Rightarrow \neg(y \sqsubset x) \tag{7}$$

$$\forall x, y, z(x \sqsubset y) \land (y \sqsubset z) \Rightarrow (x \sqsubset z) \tag{8}$$

• Overlap, •, is also a relation of parts:

-Two individuals overlap if they have parts in common:

$$x \bullet y =_{\operatorname{def}} \exists z (z \sqsubset x) \land (z \sqsubset y)$$
(9)

$$\forall x (x \bullet x)$$
(10)

$$\forall x, y (x \bullet y) \Rightarrow (y \bullet x)$$
(11)

3. A Syntactic Model of a Class of Mereologies 3.3. Mereology, Part I

• Proper overlap, \circ , can be defined:

$$x \circ y =_{\operatorname{def}} (x \bullet x) \wedge \neg (x \sqsubseteq y) \wedge \neg (y \sqsubseteq x)$$
(12)

- Whereas Formulas (1-11) holds of the model of mereology we have shown so far, Formula (12) does not.
- In the next section we shall repair that situation.
- The proper part relation, \Box , reflects the within relation.
- The *disjoint* relation, \oint , reflects the *adjacency* relation.

$$x \oint y =_{\operatorname{def}} \neg(x \bullet y) \tag{13}$$

• Disjointness is symmetric:

$$\forall x, y(x \oint y) \Rightarrow (y \oint x) \tag{14}$$

- The weak supplementation relation, Formula 15, expresses
 - that if y is a proper part of x
 - then there exists a part z
 - such that z is a proper part of x
 - and z and y are disjoint
- That is, whenever an individual has one proper part then it has more than one.

$$\forall x, y(y \sqsubset x) \implies \exists z(z \sqsubset x) \land (z \oint y) \tag{15}$$

3. A Syntactic Model of a Class of Mereologies 3.3. Mereology, Part I

- Formulas 1–3 and 15 together determine the minimal mereology, $\mathcal{M}_{\mathcal{M}inimal}$.
- Formula 15 does not hold of the model of mereology we have shown so far.
- We shall comment on this once we have introduced the notion of of parts having attributes.

3.4. A Syntactic Model of a Class of Mereologies 3.4.1. Connectors

- So far we have only covered notions of
 - parts being next to other parts or
 - within one another.
- We shall now add to this a rather general notion of parts being otherwise related.
- That notion is one of connectors.

3. A Syntactic Model of a Class of Mereologies 3.4. A Syntactic Model of a Class of Mereologies 3.4.1. Connectors

- Connectors provide for connections between parts.
- A connector is an ability be be connected.
- A connection is the actual fulfillment of that ability.
- Connections are relations between pairs of parts.
- Connections "cut across" the "classical"
 - parts being part of the (or a) whole and
 - parts being related by embeddedness or adjacency.

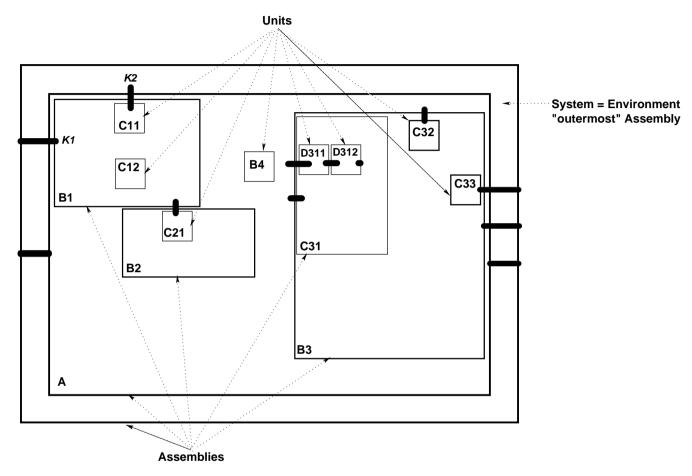


Figure 2: Assembly and Unit Connectors: Internal and External

• For now, we do not "ask" for the meaning of connectors !

- Figure 2 on the facing page "adds" connectors to Fig. 1 on page 14.
- The idea is that connectors
 - allow an assembly to be connected to any embedded part, and
 allow two adjacent parts to be connected.
- In Fig. 2 on the facing page
 - the environment is connected, by K2, to part C11;
 - $-\,{\rm the}$ "external world" is connected, by ${\sf K1},$ to ${\sf B1};$
 - etcetera.

3. A Syntactic Model of a Class of Mereologies 3.4. A Syntactic Model of a Class of Mereologies 3.4.1. Connectors

- From a system we can observe all its connectors.
- From a connector we can observe
 - its unique connector identifier and
 - $-\,{\rm the}\,\,{\rm set}\,\,{\rm of}\,\,{\rm part}\,\,{\rm identifiers}\,\,{\rm of}\,\,{\rm the}\,\,{\rm parts}\,\,{\rm that}\,\,{\rm the}\,\,{\rm connector}\,\,{\rm connects}.$
- All part identifiers of system connectors identify parts of the system.
- All observable connector identifiers of parts identify connectors of the system.

type

Κ

value

obs_Ks: $S \rightarrow K$ -set obs_KI: $K \rightarrow KI$ obs_Is: $K \rightarrow AUI$ -set obs_KIs: $P \rightarrow KI$ -set axiom $\forall k:K \cdot card obs_Is(k)=2,$ $\forall s:S,k:K \cdot k \in obs_Ks(s) \Rightarrow$ $\exists p:P \cdot p \in xtr_Ps(s) \Rightarrow obs_AUI(p) \in obs_Is(k),$ $\forall s:S,p:P \cdot \forall ki:KI \cdot ki \in obs_KIs(p) \Rightarrow$

 $\exists ! \ k: K \cdot k \in obs_Ks(s) \land ki = obs_KI(k)$

3. A Syntactic Model of a Class of Mereologies 3.4. A Syntactic Model of a Class of Mereologies 3.4.1. Connectors

- This model allows for a rather "free-wheeling" notion of connectors
 - one that allows internal connectors to "cut across" embedded and adjacent parts;
 - and one that allows external connectors to "penetrate" from an outside to any embedded part.

3. A Syntactic Model of a Class of Mereologies 3.4. A Syntactic Model of a Class of Mereologies 3.4.1. Connectors

- \bullet We need define an auxiliary function.
 - $-xtr\forall Kls(p)$ applies to a system
 - and yields all its connector identifiers.

value

 $\operatorname{xtr} \forall \operatorname{KIs:} S \to \operatorname{KI-set}$

 $xtr\forall Ks(s) \equiv \{obs_KI(k) | k: K \cdot k \in obs_Ks(s)\}$

3.5. Mereology, Part II

We shall interpret connections as follows:

- A connection between parts p_i and p_j
 - that enjoy a p_i adjacent to p_j relationship, means $p_i \circ p_j$,
 - that is, although parts p_i and p_j are adjacent
 - $-\operatorname{they}$ do share "something", i.e., have something in common.
 - What that "something" is we shall comment on later, when we have "mapped" systems onto parallel compositions of CSP processes.
- A connection between parts p_i and p_j
 - that enjoy a p_i within p_j relationship,
 - $-\operatorname{does}$ not add other meaning than
 - commented upon later, again when we have "mapped" systems onto parallel compositions of CSP processes.

- With the above interpretation we may arrive at the following, perhaps somewhat "awkward-looking" case:
 - a connection connects two adjacent parts p_i and p_j
 - * where part p_i is within part p_{i_o}
 - * and part p_j is within part p_{j_o}
 - * where parts p_{i_o} and p_{j_o} are adjacent
 - * but not otherwise connected.
 - $-\operatorname{How}$ are we to explain that !
 - * Since we have not otherwise interpreted the meaning of parts,* we can just postulate that "so it is" !
 - * We shall, later, again when we have "mapped" systems onto parallel compositions of **CSP** processes, give a more satisfactory explanation.

• We earlier introduced the following operators:

$-\sqsubseteq, \sqsubset, \bullet, \circ, \text{ and } \oint$

- In some of the mereology literature [BowmanLClarke81, BowmanLClarke85, CasatiVarzi1999] these operators are symbolised with caligraphic letters:
 - $-\sqsubseteq: \mathcal{P}: \text{ part},$
 - $-\Box: \mathcal{PP}:$ proper part,
 - $-\bullet:\mathcal{O}:$ overlap and
 - $-\oint: \mathcal{U}$: underlap.

4. Discussion & Interpretation

4. Discussion & Interpretation

- Before a semantic treatment of the concept of mereology
 - $-\operatorname{let}$ us review what we have done and
 - $-\operatorname{let}$ us interpret our abstraction
 - * (i.e., relate it to actual societal infrastructure components).

[4. Discussion & Interpretation]

4.1. What We have Done So Far ?

• We have

- presented a model that is claimed to abstract essential mereological properties of
 - * machine assemblies,
 * railway nets,
 * the oil industry,
 * oil pipelines,

* buildings with installations,* hospitals,* etcetera.

4. Discussion & Interpretation 4.2. Six Interpretations

4.2. Six Interpretations

- Let us substantiate the claims made in the previous paragraph.
 - -We will do so, albeit informally, in the next many paragraphs.
 - $-\operatorname{Our}$ substantiation is a form of diagrammatic reasoning.
 - $-\operatorname{Subsets}$ of diagrams will be claimed to represent parts, while
 - Other subsets will be claimed to represent connectors.
- The reasoning is incomplete.

4. Discussion & Interpretation 4.2. Six Interpretations 4.2.1. Air Traffic

4.2.1. Air Traffic

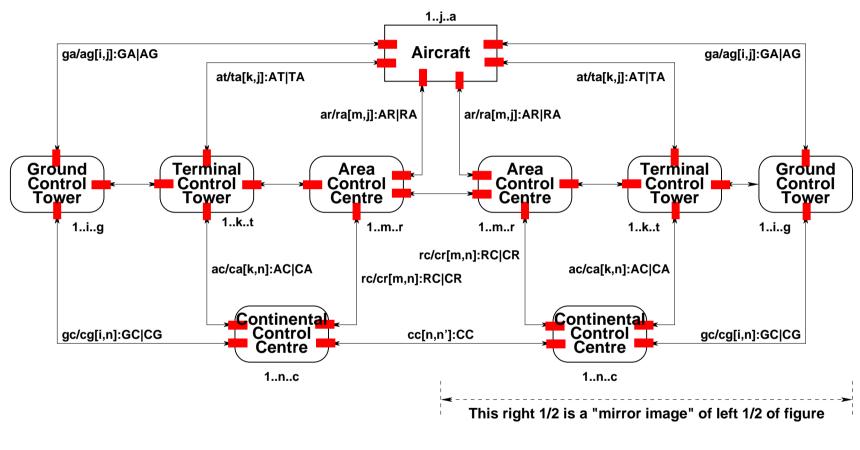
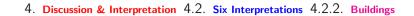


Figure 3: An air traffic system. Black boxes and lines are units; red boxes are connections



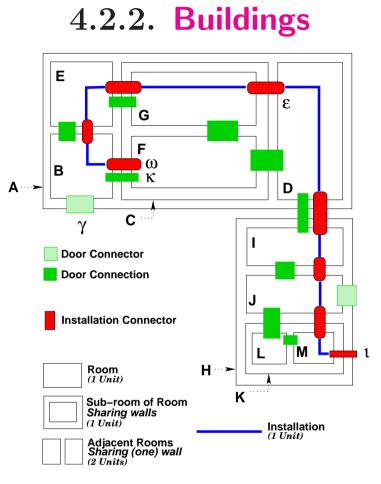


Figure 4: A building plan with installation

4. Discussion & Interpretation 4.2. Six Interpretations 4.2.3. Financial Service Industry

4.2.3. Financial Service Industry

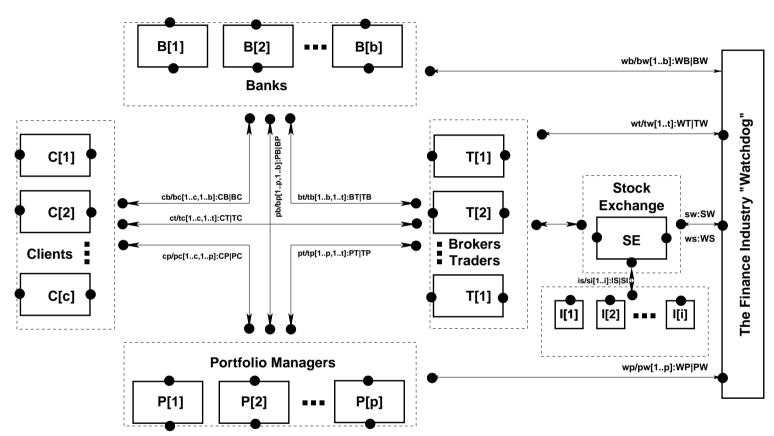


Figure 5: A financial service industry

4. Discussion & Interpretation 4.2. Six Interpretations 4.2.4. Machine Assemblies

4.2.4. Machine Assemblies

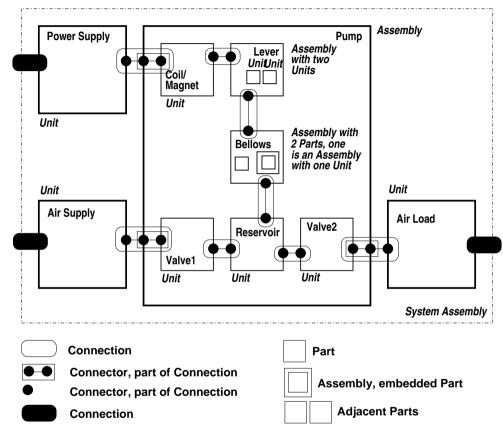


Figure 6: An air pump, i.e., a physical mechanical system

4. Discussion & Interpretation 4.2. Six Interpretations 4.2.5. Oil Industry

4.2.5. **Oil Industry** 4.2.5.1. "The" Overall Assembly

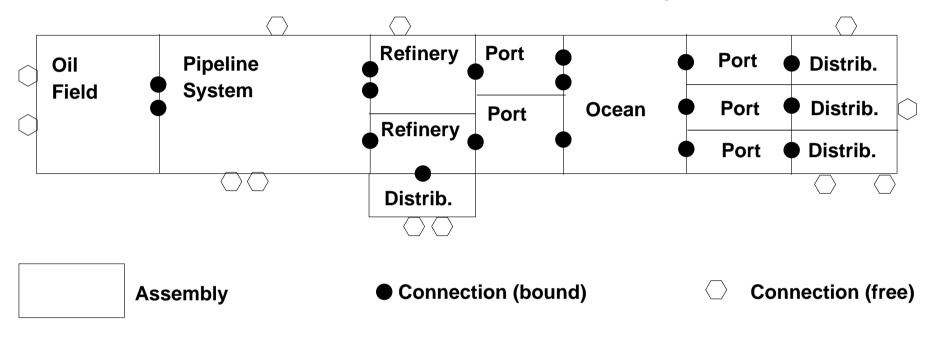


Figure 7: A Schematic of an Oil Industry

4. Discussion & Interpretation 4.2. Six Interpretations 4.2.5. Oil Industry 4.2.5.2. A Concretised Assembly Unit

4.2.5.2. A Concretised Assembly Unit ini onp fpa fpc p10 G. may connect to oil field may connect to refinery **p1** p6 B νz p11 VX ong p7 p2 may be left "dangling" inj 0 **p**8 ink G may be left dangling onr р3 Q p9 p14 vy p12 n ons vw vu fpd p5 A p4 fpb inl 0 Connector Connection (between pipe units and node units) Ο Node unit Pipe unit

Figure 8: A Pipeline System

4. Discussion & Interpretation 4.2. Six Interpretations 4.2.6. Railway Nets

4.2.6. Railway Nets

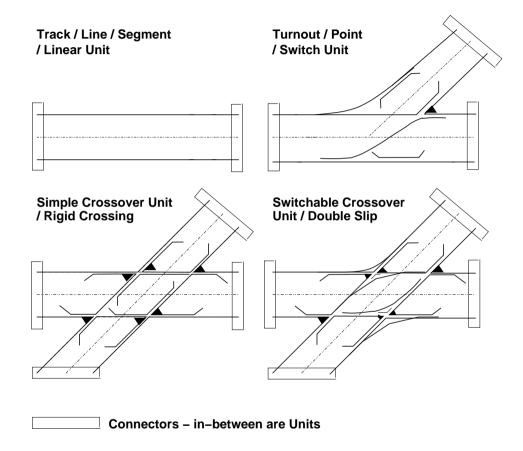
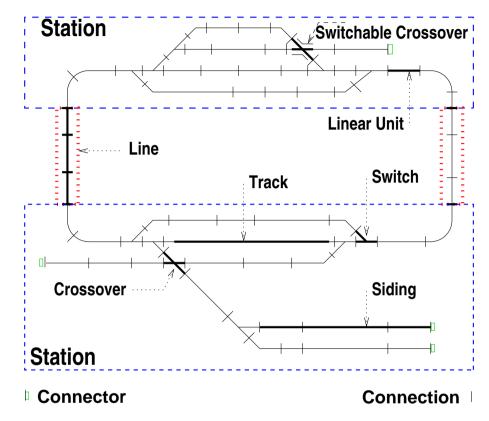


Figure 9: Four example rail units



4. Discussion & Interpretation 4.2. Six Interpretations 4.2.6. Railway Nets

Figure 10: A "model" railway net. An Assembly of four Assemblies: Two stations and two lines; Lines here consist of linear rail units; stations of all the kinds of units shown in Fig. 9 on the facing page. There are 66 connections and four "dangling" connectors

4. Discussion & Interpretation 4.3. Discussion

4.3. Discussion

- It requires a somewhat more laborious effort,
 - than just "flashing" and commenting on these diagrams,
 - $-\operatorname{to}$ show that the modelling of essential aspects of their structures
 - $-\operatorname{can}$ indeed be done by simple instantiation
 - $-\,\mathrm{of}$ the model given in the previous part of the talk.

51

[4. Discussion & Interpretation, 4.3. Discussion]

- We can refer to a number of documents which give rather detailed domain models of
 - $-\operatorname{air}$ traffic,
 - container line industry,
 - financial service industry,
 - health-care,
 - IT security,

- "the market",
- "the" oil industry²,
- transportation nets³,
- -railways, etcetera, etcetera.
- Seen in the perspective of the present paper
 - $-\operatorname{we}$ claim that much of the modelling work done in those references
 - $-\operatorname{can}$ now be considerably shortened and
 - $-\,{\rm trust}$ in these models correspondingly increased.

 $^{^{2}}http://www2.imm.dtu.dk/~db/pipeline.pdf$

 $^{^{3}} http://www2.imm.dtu.dk/~db/transport.pdf$

4. Discussion & Interpretation 4.4. Mereology, Part III

4.4. Mereology, Part III

- Formula 15 on page 26 expresses that
 - -whenever an individual has one proper part
 - then it has more than one.
- We mentioned there, Slide 27, that we would comment on the fact that our model appears to allow that assemblies may have just one proper part.

- We now do so.
 - $-\operatorname{We}$ shall still allow assemblies to have just one proper part —
 - $-\operatorname{in}$ the sense of a sub-assembly or a unit —
 - but we shall interpret the fact that an assembly always have at least one attribute.
 - Therefore we shall "generously" interpret the set of attributes of an assembly to constitute a part.

- \bullet In Sect. 5
 - we shall see how attributes of both units and assemblies of the interpreted mereology
 - contribute to the state components of the unit and assembly processes.

[4. Simple Entities] 4.5. Discussion

- In Sect. 3.2 we interpreted the model of mereology in six examples.
- The units of Sect. 2
 - $-\operatorname{which}$ in that section were left uninterpreted
 - now got individuality
 - \ast in the form of
 - aircraft,
 building rooms,
 oil pipes.
 - Similarly for the assemblies of Sect. 2. They became

* pipeline systems,* oil refineries,

* train stations,* banks, etc.

[4. Simple Entities, 4.5. Discussion]

- In conventional modelling
 - the mereology of an infrastructure component,
 - * of the kinds exemplified in Sect. 3.2,
 - $-\operatorname{was}$ modelled by modelling
 - * that infrastructure component's special mereology
 * together, "in line", with the modelling
 * of unit and assembly attributes.
- \bullet With the model of Sect. 2 now available
 - $-\operatorname{we}$ do not have to model the mereological aspects,
 - but can, instead, instantiate the model of Sect. 2 appropriately.
 - $-\operatorname{We}$ leave that to be reported upon elsewhere.

5. A Semantic Model of a Class of Mereologies 5.1. The Mereology Entities \equiv Processes

- The model of mereology (Slides 13–38) given earlier focused on the following simple entities (i) the assemblies, (ii) the units and (iii) the connectors.
- To assemblies and units we associate CSP processes, and
- to connectors we associate a CSP channels,
- one-by-one.
- The connectors form the mereological attributes of the model.

5. A Semantic Model of a Class of Mereologies 5.1. The Mereology Entities \equiv Processes 5.1.1. Channels

5.1.1. Channels

- The CSP channels,
 - are each "anchored" in two parts:
 - $-\operatorname{if} a$ part is a unit then in "its corresponding" unit process, and
 - if a part is an assembly then in "its corresponding" assembly process.
- From a system assembly we can extract all connector identifiers.
- They become indexes into an array of channels.
 - $-\operatorname{Each}$ of the connector channel identifiers is mentioned
 - $-\operatorname{in}$ exactly two unit or assembly processes.

value

```
s:S
kis:KI-set = xtr∀KIs(s)
```

type

 $ChMap = AUI \quad \overrightarrow{m} \quad KI-set$

value

```
cm:ChMap = \left[ obs\_AUI(p) \mapsto obs\_KIs(p) | p:P \cdot p \in xtr\_Ps(s) \right] channel
```

```
\mathrm{ch}[\,i|i{:}\mathrm{KI}{\cdot}i\in \mathrm{kis}\,]~\mathrm{MSG}
```

5. A Semantic Model of a Class of Mereologies 5.2. Process Definitions

5.2. Process Definitions

value

system: $S \rightarrow Process$ system(s) \equiv assembly(s)

```
assembly: a:A\rightarrowin,out {ch[cm(i)]|i:KI·i \in cm(obs_AUI(a))} process
assembly(a) \equiv
\mathcal{M}_{\mathcal{A}}(a)(obs_A\Sigma(a)) \parallel
\parallel {assembly(a')|a':A·a' \in obs_Ps(a)} \parallel
\parallel {unit(u)|u:U·u \in obs_Ps(a)}
obs_A\Sigma: A \rightarrow A\Sigma
```

 $\mathcal{M}_{\mathcal{A}}: a: A \to A\Sigma \to \text{in,out} \{ch[cm(i)] | i: KI \cdot i \in cm(obs_AUI(a))\} \text{ process} \\ \mathcal{M}_{\mathcal{A}}(a)(a\sigma) \equiv \mathcal{M}_{\mathcal{A}}(a)(A\mathcal{F}(a)(a\sigma))$

 $\begin{array}{l} A\mathcal{F}: \ a: A \to A\Sigma \to \text{in,out } \{ch[em(i)] | i: KI \cdot i \in cm(obs_AUI(a))\} \times A\Sigma \end{array}$

5. A Semantic Model of a Class of Mereologies 5.2. Process Definitions

unit: u:U \rightarrow in,out {ch[cm(i)]|i:KI·i \in cm(obs_UI(u))} process unit(u) $\equiv \mathcal{M}_{\mathcal{U}}(u)(obs_U\Sigma(u))$ obs_U Σ : U \rightarrow U Σ

 $\mathcal{M}_{\mathcal{U}}: u: U \to U\Sigma \to \text{in,out} \{ch[cm(i)] | i: KI \cdot i \in cm(obs_UI(u))\} \text{ process} \\ \mathcal{M}_{\mathcal{U}}(u)(u\sigma) \equiv \mathcal{M}_{\mathcal{U}}(u)(U\mathcal{F}(u)(u\sigma))$

 $U\mathcal{F}: U \to U\Sigma \to \text{in,out} \{ch[em(i)]|i:KI \cdot i \in cm(obs_AUI(u))\} U\Sigma$

5. A Semantic Model of a Class of Mereologies 5.3. Mereology, Part III

5.3. Mereology, Part III

- A little more meaning has been added to the notions of parts and connections.
- The within and adjacent to relations between parts (assemblies and units) reflect a phenomenological world of geometry, and
- the **connected** relation between parts (assemblies and units)
 - reflect both physical and conceptual world understandings:
 * physical world in that, for example, radio waves cross geometric "boundaries", and
 - * conceptual world in that ontological classifications typically reflect lattice orderings where *overlaps* likewise cross geometric "boundaries".

5.4. Discussion

- That completes our 'contribution':
 - -A mereology of systems has been given
 - -a syntactic explanation, Sect. 2,
 - $-\,\mathrm{a}$ semantic explanation, Sect. 5 and
 - $-\,{\rm their}$ relationship to classical mereologies.

5.5. Acknowledgements

- I thank Lars-Henrik Eriksson and his colleagues for inviting me to give a two week "PhD School" series of lectures at Uppsala.
- And I also thank for the opportunity to give this seminar.