
The Joelle Programming Language ∗

Evolving Java Programs Along Two Axes of Parallel Eval

Johan Östlund
Uppsala University

johan.ostlund@it.uu.se

Stephan Brandauer
Uppsala University
stbr3377@it.uu.se

Tobias Wrigstad
Uppsala University

tobias.wrigstad@it.uu.se

Abstract
This short position paper reports on our efforts to create an object-
oriented language for concurrent and parallel programs based on
the active object pattern. The resulting Joelle language is explicitly
designed to enable smooth reuse of existing libraries, and intends to
provide an evolutionary path for incrementally transitioning entire
legacy programs into the multicore age.

1. Introduction
Object-oriented programming rests on aliasing, mutable state and
stable object identities. Taken alone, each member of this troika is
innocuous, but in combination, and especially in a parallel setting,
they can easily spell disaster. Simply by following a reference in a
field, a thread of computation may end up in a completely different
part of a program with different invariants that must be upheld to
maintain consistency under mutation. Consequently, pointers can
be argued the equivalents of the GOTO statements in the days of old.

Joelle builds on techniques for understanding where pointers
point, reifying patterns of sharing, non-sharing, ownership transfer,
etc. into compile-time checkable constructs which we believe are
keys to enabling safe parallelism.

In this position paper, we describe the current state of the Joelle
language (following previous work on Joëlle [4]), a parallel object-
oriented programming language building on Java. A primary goal
of Joelle is to provide an evolutionary path for existing Java pro-
grams and allow a program to gradually be transitioned into the
multicore era by wrapping parts of a system into isolated active
objects with minimal effort. With Joelle we hope to support par-
allel programming which is simple, reliable and efficient—simple
enough for non-experts to construct parallel components which
scale reliably with additional cores, yet are easily composable, and
do not require knowledge of complex, platform-specific memory
models.

2. Joelle
Active objects in Joelle build on the Creol semantics [7, 9]. They
execute in parallel and communicate asynchronously by bidirec-
tional messages returning future values. Unlike Creol objects (or
most active objects or actors for that matter) active objects in Joelle
may encapsulate many threads of control and process messages in
parallel, in a deterministic way transparent to the programmer. The
active object serves as a single entry point into an aggregate and
all messages to objects inside an active object must go through it.
This is different from Creol where an active object’s innards may
be exported and any interaction with exported objects automatic-
ally becomes asynchronous.

∗ Supported in part by the Swedish Research Council within the UPMARC
Linnaeus centre of Excellence.

Joelle relies on deep ownership types [5] to guarantee isolation
of active objects, and builds on previous work on the Joe1 [3],
Joe3 [11] and Joline [12] languages. To enable efficient transfer of
message arguments across active objects, Joelle supports externally
unique references to complex object aggregates, immutable data
with staged construction, and allow sharing immutable strands of
otherwise mutable aggregates. Such arguments can be transmitted
in constant time, and do not give rise to races, non-determinism or
observational exposure [2]. For a longer treatise on these features
of Joelle, see [4].

Currently, our work is focused on exploiting parallelism internal
to an active object by partitioning its internal state into multiple
disjoint regions. This is similar to OOFX [8] or Ownership Do-
mains [1], but with deep ownership. Methods may be decorated
with computational effects summaries over regions and the Joelle
scheduler can subsequently use this information at run-time to ex-
ecute messages in parallel or (we hope) improve cache utilisation.

2.1 Gradual Parallelism
Joelle is intended as a superset of Java with the goal that most valid
Java code should be valid Joelle code1. Parallelism and opportun-
ities for scaling with the addition of cores can be added gradually
by encapsulating subsystems inside active objects, and refactoring
their existing interfaces into messages on the active objects.

Joelle supports piecemeal parallelisation of a program along
two orthogonal axes: by mapping smaller parts of the system into
active objects, and by detailing the design of existing active objects
to support parallel message processing where possible.

Naturally, naively breaking a sequential system down into a
number of active objects is unlikely to automatically utilise parallel
hardware to a high degree—this requires careful redesign. For now,
we expect active objects be used mainly to achieve coarse grain
parallelism, on the level of components or modules.

2.2 Regions and Effects
Clarke and Drossopoulou’s initial work on Joe1 [3] introduced the
notion of ownership-based effects. Joe1 cleverly extended type-
based alias analysis by utilising ownership information to trivially
answer aliasing questions about variables located in different parts
of the heap. Put simply, objects belonging to different ownership
contexts cannot be aliases. This means that the may-alias question
shifts from aliasing of objects in variables to aliasing of ownership
contexts in owner parameters (which is not trivial, see [10]).

Inspired by Boyland and Retert’s work on OOFX [8], we extend
Joelle with support for dividing objects into disjoint regions using
deep ownership to avoid “leaking regions”.

1 Currently, we do not support threads, or global data—such programs must
first be refactored.



encapsulation boundary

A
B

C

R

U S
T

(a) Active object

R

S

T

U

R0

U1

T2

S3

R4

S5

(b) Message queues with barriers

Figure 1. (a) Active object with three regions, four methods & ef-
fects (thick). Objects inside hold cross-references (thin). (b) Ex-
ample scheduling of messages R0, U1, T2, S3, R4, S5. Barriers in
black and dependencies as phased lines.

Figure 1(a) shows an active object with three regions A, B and
C and methods R,U, S, T that read from (↓), write to (↑) or both
read and write (l) these regions. In Figure 1(a), the method R reads
the region A, U writes, but does not read, both A and B, S reads
but does not write both B and C, and T both reads and writes
C. Notably, objects in different regions may freely cross-reference.
However, if evolving T introduces a use of the reference from C
into B, the compiler forces this to be captured in T ’s signature
(introducing an arrow from B to T in the figure).

2.3 Scheduling of Messages
Messages are partially ordered by a happens-before relation: or-
dering exists between messages that have a read-write or write-
write conflict on a region. The happens-before relation guarantees
that messages sent from the same thread are always processed in
sending-order if they conflict. Unordered messages can run out of
order or in parallel. In terms of Figure 1(a), the messages R and U
are conflicting on the region A. Similarly, T messages self-conflict
because T involves a read/write-access.

If the active object in Figure 1(a) received the messages R0, U1,
T2, S3, R4, S5, in that order, the messages and dependencies would
assume the shape of Figure 1(b). When a message is submitted,
a barrier is added to the end of the queue of each conflicting
message-class (there is one queue per asynchronous method). After
a message was executed, it and its barriers are removed. Messages
are safe to run iff there is no barrier in front of them. Here, R0 and
T2 are free to run after which U1 is scheduled. Note: T2 conflicts
with neither R0 nor U1.

The data structure in Figure 1(b) groups messages by their class,
allowing the scheduler to execute similar messages (e.g. S3, S5) in
succession. The possibility of improving cache hit rates by-design
arises. In a parallel project [6, 13], we are exploring the use of
thread-locality information to simplify cache coherence protocols.
We hope to extend this work to also include Joelle.

3. Active Objects as Single Parallel Abstraction
Active objects have been claimed a natural fit to marry object-
oriented programming with concurrency [14]. Threads of control
destroy the conceptual view of objects collaborating by sending
messages to each other by forcing a programmer to consider thread-
safety and multiple interactions with a single object taking place
simultaneously. Putting the object in control over when it will
process a message, greatly simplifies programming, reasoning and
verification [7, 9].

Message queues are a natural place to carry out simple on-
line analysis of disjointness in a way transparent to a programmer.
For example, two messages with effects that only concern their

argument can be trivially processed in parallel if the arguments
are not aliases. This allows a straightforward encoding of fork/join
style tasks inside active objects. Furthermore, operations on unique
references are trivially disjoint from all other state and do not even
need the simple alias-analysis at run-time.

The shared-nothing model of computation performs poorly but
scales well (in theory). For example, it excludes parallel in-place
sorting and copying easily introduces memory bandwidth bottle-
necks. By permitting mutable structures inside an active object and
allowing internal parallelism where it can be determined safe, we
hope to strike a good balance between share-all and share-nothing
while keeping programming simple.

4. A Very Preliminary Note on Performance
Currently, we are only using a small number of well-known micro
benchmarks and mockups that simulate real systems to evaluate
Joelle’s performance, mostly as a sanity check for our own imple-
mentation. We are continuously comparing ourselves with the likes
of Erlang, Jetlang, Scala and Habanero Java. As an anecdotal data
point, a port of the Erlang solution2 of the Thread Rings benchmark
to Joelle runs about 15% faster than the original program.

5. Concluding Remarks
In this short paper we have presented the current state of Joelle,
which is still in its infancy, both in terms of language design and im-
plementation. Joelle aims to smooth the transitioning of legacy Java
applications into the multicore age. Our immediate future work in-
cludes supporting multiple scheduling strategies, investigating is-
sues and scalability of real application, as well as investigating how
far we can stretch the active object as a single parallel abstraction.

References
[1] J. Aldrich and C. Chambers. Ownership Domains: Separating Aliasing

Policy from Mechanism. In ECOOP, 2004.
[2] J. Boyland. Why we should not add readonly to Java (yet). JOT, 2006.

Special issue: ECOOP 2005 Workshop FTfJP.
[3] D. Clarke and S. Drossopoulou. Ownership, Encapsulation and the

Disjointness of Type and Effect. In OOPSLA, 2002.
[4] D. Clarke, T. Wrigstad, J. Östlund, and E. Broch-Johnsen. Minimal

Ownership for Active Objects. In APLAS, 2008.
[5] D. G. Clarke, J. Potter, and J. Noble. Ownership Types for Flexible

Alias Protection. In OOPSLA, 1998.
[6] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato. Increasing

the effectiveness of directory caches by deactivating coherence for
private memory blocks. In ISCA, 2011.

[7] F. S. de Boer, D. Clarke, and E. B. Johnsen. A Complete Guide to the
Future. In ESOP, 2007.

[8] A. Greenhouse and J. Boyland. An Object-Oriented Effects System.
In ECOOP, 1999.

[9] E. B. Johnsen and O. Owe. An Asynchronous Communication Model
for Distributed Concurrent Objects. Software and Systems Modeling,
6(1):35–58, Mar. 2007.

[10] J. Östlund and T. Wrigstad. Regions as Owners. In IWACO, 2011.

[11] J. Östlund, T. Wrigstad, D. Clarke, and B. Åkerblom. Ownership,
Uniqueness, and Immutability. volume 11 of TOOLS, 2008.

[12] T. Wrigstad. Ownership-Based Alias Management. PhD thesis, Royal
Institute of Technology, Kista, Stockholm, May 2006.

[13] T. Wrigstad, F. Pizlo, F. Meawad, L. Zhao, and J. Vitek. Loci: Simple
thread-locality for java. In ECOOP, 2009.

[14] A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-oriented concur-
rent programming abcl/1. SIGPLAN Not., 21(11):258–268, June 1986.

2 http://shootout.alioth.debian.org/

http://shootout.alioth.debian.org/u64q/program.php?test=threadring&lang=hipe&id=1

	Introduction
	Joelle
	Gradual Parallelism
	Regions and Effects
	Scheduling of Messages

	Active Objects as Single Parallel Abstraction
	A Very Preliminary Note on Performance
	Concluding Remarks

