
Edit, Run, Error, Repeat: Learning Analytics To Identify Most
Improved Programming Student

Johan Snider
johan.snider@it.uu.se
Uppsala University
Uppsala, Sweden

ABSTRACT
In the face of learning to program, students are often divided into
two camps: those who excel and those who struggle. Through this
challenge, some students manage to persevere. These thesis projects
aims to identify the students who have made the most significant
improvements in their programming skills, by leveraging various
learning analytics and metrics. The field of learning analytics in
programming has often sought to identify struggling students, uti-
lizing metrics such as the error quotient (EQ) and time-on-task.
By framing error quotient through operant conditioning and time-
on-task through expectancy-value theory, we aim to root these
learning analytics in established learning theory to validate their
relevance. These preliminary results illustrate how we can identify
students who have improved the most based on these metrics.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion.

KEYWORDS
Computer Science Education, Learning Analytics, Error Quotient,
Time-on-Task

ACM Reference Format:
Johan Snider. 2023. Edit, Run, Error, Repeat: Learning Analytics To Identify
Most Improved Programming Student. In Proceedings of Make sure to enter
the correct conference title from your rights confirmation emai (IT ’23). ACM,
New York, NY, USA, 3 pages. https://doi.org/XXXXXXX.XXXXXXX

1 PROBLEM AND MOTIVATION
As the age old adage goes, learning to program is difficult [3]. Of-
ten in a classroom, two groups of students emerge: students that
perform well and students who struggle. Over time, effects com-
pound and the differences between these students exaggerate. In
this divide, there exists students who somehow make the transi-
tion between struggle and understanding. Unfortunately, this is
not always the case. There are always students who perform well
throughout a course, and vice versa, students whose struggle is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IT ’23, Spring 2024, Uppsala University Sweden
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

constant. The interesting case, dare said most interesting, is the
student who makes this leap.

Research question:

(1) Using various learning analytics, how can we identify
the student who has improved the most?

2 BACKGROUND AND RELATEDWORK
The field of learning analytics in programming often tries to iden-
tify struggling students[1, 5, 8, 11]. As such, several metrics have
been developed to ascertain meaning from students programming
data [2, 6]. One prominent approach is to concentrate on specific re-
peated errors to score a students programming sessions, commonly
referred to as error quotient (EQ) [5]. Along with this, time-on-task
is another metric which can be computed to reason about a stu-
dent’s experience while programming [7]. These projects usually
aim, at least in part, to identify struggling students. Unfortunately,
according to a literature review from 2015 less than 20% of learning
analytics projects followed students in a longitudinal manner[4].
Additionally, from the same literature review, only 11% of the pa-
pers formally referenced learning or educational theories in the
development or analysis of their project[4].

3 LEARNING THEORY
Error quotient and time-on-task each need to be explained and
defined in their context. For this purpose, operant conditioning is
used to explain why EQ is a valuable metric[9]. When a student
encounters an error, this error can be seen as a negative stimulus.
This negative stimulus should prompt a student towards some
behavior to solve or remove the error. Failure to do so shows that the
student has at least syntactically misunderstood some programming
concept. Tallying these repeated programming errors over time
gives us an indication that a student is struggling, or for lack of a
better expression failing to learn.

Time-on-task can be framed with several learning theories that
relate tomotivation. In this work, time-on-task is framed by expectancy-
value theory [9]. Here a students expectancy is their belief that they
are able to finish or complete a programming exercise. The value
is the benefit of successfully solving the task. Expectancy-value
theory suggests that motivation is the product of the expectancy
and the value. If we postulate that time-on-task is a reflection of
motivation, we can expect that students with higher time-on-task
have a stronger belief in their abilities and a hope for success, while
students with a lower time-on-task might have a weaker belief in
their own abilities.

https://orcid.org/0000-0003-4250-1201
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

IT ’23, Spring 2024, Uppsala University Sweden Johan Snider

Figure 1: Programming State Diagram

Figure 2: State Transition Matrix

4 RESULTS AND CONTRIBUTIONS
The following are preliminary results which have been, to some
extent, cherry picked for illustration purposes.

Figure 1 shows a state transition diagram which can be used
to reason about students programming processes [10]. While pro-
gramming, students rapidly transition between these states, editing
code, running their program and generating errors. By collecting
this fine-grained programming data we can analyze a students
programming experience in many ways.

Figure 2 shows a transition matrix for a single student during a
course. Here we see that for this student, after a compile error or a
runtime error, the student is more likely to run their code again, as
opposed to edit their program. How these values change over time
can offer insight into a student’s programming behavior.

In more detail, we can observe the time in between program
runs and the correctness of the program [4, 8]. Figure 3 shows
how often a student runs their code, and the result if the code goes
from working (Run) or not working (Error). Here we see that for
this student, transitions between code with an error and code with
an error happens quickly usually under ten seconds (the biggest
red bar). Whereas when code goes from working to not working,
usually more than 120 seconds pass (the biggest orange bar). How
these behaviors change over time can also offer insight into how a
student is improving in a course.

Figure 3: Time between program runs

Figure 4: EQ and Tot Change Over Time

Using the fine grain programming data we can also compute an
average time-on-task and an average error quotient (EQ) score for
a student every week. Figure 4 shows data for one student over
several months with trend lines fitted to the data for clarity. Here a
break threshold of three minutes was used to compute time-on-task
[6]. EQ was computed using a two parameter penalty for identical
errors and errors of the same types fitted for a python context [8].

Here we see that over time the EQ score trends downward and
the time-on-task trends upward, with some variation. Arguably,
this is an ideal case for identifying student improvement: over time
spending more time programming and having a lower EQ score.
Of course, the complexity of the programming topics also factor
into this analysis. As measured by these metrics we can identify the
student, or students, that improve the most during a programming
course.

Edit, Run, Error, Repeat: Learning Analytics To Identify Most Improved Programming Student IT ’23, Spring 2024, Uppsala University Sweden

REFERENCES
[1] Brett A Becker. 2016. A new metric to quantify repeated compiler errors for

novice programmers. In Proceedings of the 2016 ACM Conference on Innovation
and Technology in Computer Science Education. 296–301.

[2] Adam S Carter, Christopher D Hundhausen, and Olusola Adesope. 2015. The nor-
malized programming state model: Predicting student performance in computing
courses based on programming behavior. In Proceedings of the eleventh annual
international conference on international computing education research. 141–150.

[3] Ge Gao, Samiha Marwan, and Thomas W Price. 2021. Early performance predic-
tion using interpretable patterns in programming process data. In Proceedings of
the 52nd ACM technical symposium on computer science education. 342–348.

[4] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler,
Stephen H Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
et al. 2015. Educational data mining and learning analytics in programming:
Literature review and case studies. Proceedings of the 2015 ITiCSE on Working
Group Reports (2015), 41–63.

[5] Matthew C Jadud. 2006. Methods and tools for exploring novice compilation
behaviour. In Proceedings of the second international workshop on Computing
education research. 73–84.

[6] Juho Leinonen, Francisco Enrique Vicente Castro, and Arto Hellas. 2021. Fine-
grained versus coarse-grained data for estimating time-on-task in learning pro-
gramming. In Proceedings of The 14th International Conference on Educational
Data Mining (EDM 2021). The International Educational Data Mining Society.

[7] Juho Leinonen, Francisco Enrique Vicente Castro, and Arto Hellas. 2022. Time-
on-task metrics for predicting performance. ACM Inroads 13, 2 (2022), 42–49.

[8] Andrew Petersen, Jaime Spacco, and Arto Vihavainen. 2015. An exploration
of error quotient in multiple contexts. In Proceedings of the 15th Koli Calling
Conference on Computing Education Research. 77–86.

[9] Dale H Schunk. 2012. Learning theories an educational perspective. Pearson
Education, Inc.

[10] Johan Mattias Snider. 2023. Edit, Run, Error, Repeat: Learning Analytics to Find
Struggling Students in Upper Secondary Programming Classes. In Proceedings of
the 2023 Conference on Innovation and Technology in Computer Science Education
V. 2. 629–630.

[11] Christopher Watson, Frederick WB Li, and Jamie L Godwin. 2013. Predicting
performance in an introductory programming course by logging and analyzing
student programming behavior. In 2013 IEEE 13th international conference on
advanced learning technologies. IEEE, 319–323.

	Abstract
	1 Problem and Motivation
	2 Background and Related Work
	3 Learning Theory
	4 Results and Contributions
	References

