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Contribution
We derive a Bayesian nonparametric model allowing for joint es-

timation of the magnetic field and the magnetic sources in com-

plex environments. The model is a Gaussian process which exploits the

divergence- and curl-free properties of the magnetic field by combining

well-known model components in a novel manner.

Problem formulation
Consider a magnetic environment. We

want to find a magnetic map of this en-

vironment representing both the mag-

netic sources as well as their induced

magnetic field. Such maps could be

used in indoor navigation systems.

Magnetic Fields
There are two different, but closely related ways to describe the magnetic

field, denoted with the symbols B and H. These fields have to obey the

magnetostatic equations

∇ ·B = 0 ← divergence-free property,

∇×H = 0 ← curl-free property.

Further, these two fields are coupled as
1

µ0
B−H = M,

where M is the magnetization describing our magnetic environment.

Example - Uniformly magnetized sphere
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Modeling
We collect noisy three-dimensional magnetic field measurements yB,k at

known positions xk. At these positions we also know that the magneti-

zation is zero yM,k = 0. This can be modeled as

yB,k = fB(xk) + eB,k, eB,k ∼ N (0, σ2
nI3), (1a)

yM,k = fM(xk) = fB(xk)− fH(xk), (1b)

where fB(xk), fH(xk) and fM(xk) represent the B-, M- and H-field

respectively.

We place this in a statistical setting by putting Gaussian process priors

on fB and fH (and consequently also implicitly on fM). Also consider

these two priors to have a common constant mean function (correspond-

ing to the earth magnetic field)

fB ∼ GP
(
β,KB(x,x′)

)
, fH ∼ GP

(
β,KH(x,x′)

)
, (1c)

β ∼ N (0, σ2
βI3), (1d)

where KB(x,x′) and KH(x,x′) are covariance functions ensuring the

divergence- and curl-free properties of fB and fH having the form

KB(x,x′) =σ2
f exp

{
−‖x− x′‖2

2l2

}
·

((
x− x′

l

)(
x− x′

l

)T

+

(
2− ‖x− x′‖2

l2

)
I3

)
, (1e)

KH(x,x′) =σ2
f exp

{
−‖x− x′‖2

2l2

}
·

(
I3 −

(
x− x′

l

)(
x− x′

l

)T
)
.

(1f)

Combined model

By combining the measurements yk =
[
yT

B,k yT
M,k

]T
, the model (1) can

be reformulated as one function f : R3 → R6 with one zero-mean Gaus-

sian process prior

f(x) =

[
fB(x)

fM(x)

]
=

[
I3 03

I3 −I3

] [
fB(x)

fH(x)

]
∼ GP(0,K(x,x′)), (2a)

where

K(x,x′) =

[
KB(x,x′) + σ2

βI3 KB(x,x′)

KB(x,x′) KB(x,x′) + KH(x,x′)

]
. (2b)

Results
Simulation: Consider the example with a uniformly magnetized

sphere. In total 50 training inputs are chosen from a region outside

the sphere. Using these measurements, the model enables estimation of

the B-, H- and M-field, which resemble the true fields.

Training data Estimation
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Real world data: A three-axis magnetometer has been used to mea-

sure the magnetic field at various locations around a metallic table. The

position and the orientation of the magnetometer unit were measured us-

ing an optical reference system (Vicon). As a conclusion, the geometrical

shape of the table could be reconstructed using these measurements.
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(a) Training data (seen from above) (b) Estimated shape of the M-field of the table

Conclusion
The advantage with the proposed model is its ability to describe both

the magnetic field and the magnetic sources in a nonparametric manner.

This has been verified using both simulated and real world data.

Future work
• Include prior information about geometry.

•Do simultaneous localization and mapping.
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