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N. Wahlström and E. Özkan.
Extended target tracking using Gaussian pro-
cesses.
IEEE Transactions on Signal Processing,
63(16):4165–4178, 2015.
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Extended target tracking

Many sensors generate more than one measurement/target
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Extended target (definition)

Targets that potentially give rise to multiple measurements
at each time step

Goal: We want to estimate target position, target orientation and
target extent jointly.
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Related work
• Elliptical targets using inverse Wishart prior
• First paper (Koch, Trans. Aerospace 2008).

• Multiple ellipses per target (Lan and Li, Fusion 2012).

• Encoding orientation (Granström and Orguner, Trans.
Aeorspace 2014)

• Parametrized objects, rectangles, ellipses etc. (Granström,
Fusion 2011)

• Random hyper-surface model (Baum and Hanebeck, Fusion
2011)

• Computer vision: B-splines (Blake et al., 1993, 1995, 1998)
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Modeling using polar coordinates
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We model f(θ) using a Gaussian process.

f(θ) ∼ GP(0, k(θ, θ′)), E[f(θ)f(θ′)] = k(θ, θ′)
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Covariance function
• We use a periodic covariance function to model the
periodicity

• We use a additional constant covariance to model a constant
(but unknown) mean, corresponding to the mean radius of
the target
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Example
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Recursive GP regression

Idea: Consider function
values f1, f2, . . . , fN f to
be the state components
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• Recursive update with KF
• Add process noise
• xf

k can be augmented with target
position and orientation
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Sensor model

xG

yG xL
yL

θLk,l

ψk
θGk,l

rk

yk,l

Measurement is the sum of target position and offset due to target
extent

yk,l = rk +

[
cos(θGk,l)

sin(θGk,l)

]
f(θLk,l) + ek,l, θGk,l = θGk,l(rk)

θLk,l = θLk,l(rk, ψk)
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Sensor model
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This can be summarized into a non-linear sensor model

yk,l = rk +H(rk, ψk)x
f
k + ek,l
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Real data experiment

• Laser range data

• Multi-target scenario (cars, bicycles, humans)

• Almost no clutter

We used a simple logic-based multi-target tracker:
• Gating based likelihood

• Associate a measurement with the most likely target

• Cluster all ungated measurements and form new targets
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Real data experiment -result



Magnetic Fields and Extended Objects Niklas Wahlström October, 28, 2015 15

Real data experiment - comparison
Green: RHM (Baum and Hanebeck). Black: Elliptical target
(Koch...), Blue: proposed model
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Extension - Symmetry assumptions

If we assume that f(θ) has a period of π instead of 2π, we can
encode symmetry assumptions.
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Extension - Measurements from interior
If the measurements originate from the target interior, we can add
a random scalar to compensate for that

yk,l = rk + sk,lH(rk, ψk)x
f
k + ek,l, sk,l ∈ [0, 1]
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Conclusions

Conclusions
• Model the target extent with a Gaussian process

• Estimate target extent and kinematic state jointly

• Fully recursive update provided



1 Extended Target Tracking Using
Gaussian Processes

2 Tracking of Magnetic Objects



N. Wahlström and F. Gustafsson.
Tracking position and orientation of magnetic
objects using magnetometer networks.
IEEE Transactions on Signal Processing,
2015. Submitted.
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Magnetic tracking

Advantages
• Cheap sensors

• Small sensors
• Low energy consumption
• No weather dependency
• Passive unit, requires no
batteries
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Mathematical model - dipole field

The magnetic field can be described with a dipole field.

J(r′)

m
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Sensor model - single dipole

The measurements can be described with a state-space model

xk+1 = Fkxk +Gkwk, wk ∼ N (0, Q),

yk,j = hj(xk) + ek, ek ∼ N (0, R)

Point target sensor model (one dipole)

hj(xk) = C(rk − θj)mk, xk = [rTk vT
k mT

k ωT
k ]

T

C(r) =
µ0

4π‖r‖5 (3rr
T − ‖r‖2I3),

Measurement from a sensor network of
magnetometers positioned at {θj}Jj=1.

Degrees of freedom
• 3D position
• 2D orientation
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Sensor model - multi-dipole

The measurements can be described with a state-space model

xk+1 = Fkxk +Gkwk, wk ∼ N (0, Q),

yk,j = hj(xk) + ek, ek ∼ N (0, R)

Extended target sensor model (a structure of dipoles)

hj(xk) =

L∑
l=1

C(rk +Rk(qk)sl − θj)mlRk(qk)bl,

xk = [rTk vT
k qT

k ωT
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Degrees of freedom
• 3D position
• 3D orientation
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Experiment - setup
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Experiment - results - position
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Black: Ground truth position. Color: Estimated position
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Experiment - results - orientation
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Black: Ground truth orientation. Color: Estimated orientation
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Application 1: Digital pathology
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Application 2: Digital water colors
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Application 3: Digital table hockey
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Application 4: Interactive 3D modeling



N. Wahlström, R. Hostettler, F. Gustafsson,
and W. Birk.
Classification of driving direction in traffic
surveillance using magnetometers.
IEEE Transactions on Intelligent Transporta-
tion Systems, 15(4):1405–1418, 2014.
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Problem formulation

• One 2-axis magnetometer has been deployed on the roadside

Magnetometer 0 0.5 1 1.5 2

0

t [s]

M
ag

ne
ti
sk

fä
lt

yx

yy

• The magnetometer measures a distortion of the magnetic
field.

We want to classify the driving direction of the vehicle!
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Real world data
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Classify driving direction by the turn of the measurement trajectory!
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The classifier

The area of one triangle is
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• Sum over all triangles
• The enclosed area can be
computed as two inner products!
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• The sign of f̂ determines the driving direction.
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Experimental results
• 2 sensor nodes
• 158 min
• 291 vehicles travelling
south-north

• 220 vehicles travelling
north-south

N

S

EW

Sensor 2 Sensor 1

South-North

North-South

Correct classification by the two sensors

South-North North-South
(Sensor 1) (Sensor 2)

Sensor 1 290/291 189/220
Sensor 2 265/291 220/220
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Conclusion

• Extended Target Tracking using GPs

1. Model the target extent with a Gaussian process

2. Estimate target extent and kinematic state jointly

3. Fully recursive update provided

• Tracking of Magnetic Objects

1. Accuracy down to 5mm and 2◦

2. Four different applications were presented

3. Classifying driving direction with only one 2-axis
magnetometer
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