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My thesis

Linkdping studies in science and technology. Dissertations. No. 1723

Modeling of Magnetic Fields
and Extended Objects for
Localization Applications Three areas:

Niklas Wohlstrém * Magnetic tracking

e Extended target tracking

e Deep dynamical models for
control

LINKOPING
II.“ UNIVERSITY

LINKOPING
II.“ UNIVERSITY



Deep Dynamical Models Niklas Wahlstrém February 10, 2016
Deep Learning: A recent example

First steps towards an autonomous system that learns by

itself from raw pixel data.
Trial: 3 Frame: 94

e Deep autoencoder network +
nonlinear dynamical model

e Model predictive control (MPC)
o Ref. value: zef = fq(¥ref)

e The model is automatically
improved (in an iterative manner)

J.-A. M. Assael, N. Wahlstrém, T. B. Schdn, and M. P. Deisenroth. Data-Efficient Learning of
Feedback Policies from Image Pixels using Deep Dynamical Models. In Deep Reinforc. Learning WS
at the Conference on Neural Information Processing Systems (NIPS), Montréal, Canada, Dec. 2015.
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Deep Learning: A recent example

First steps towards an autonomous system that learns by
itself from raw pixel data.

Trial: 1 Frame: 1

e Deep autoencoder network +
nonlinear dynamical model

e Model predictive control (MPC)
o Ref. value: zef = fq(¥ref)

e The model is automatically
improved (in an iterative manner)

K<<l > 1] = ote] +]

J.-A. M. Assael, N. Wahlstrém, T. B. Schdn, and M. P. Deisenroth. Data-Efficient Learning of
Feedback Policies from Image Pixels using Deep Dynamical Models. In Deep Reinforc. Learning WS
at the Conference on Neural Information Processing Systems (NIPS), Montréal, Canada, Dec. 2015.

LINKOPING
II.“ UNIVERSITY



Deep Dynamical Models Niklas Wahlstrém February 10, 2016

Deep Learning: Another recent example

Automatically learn how to describe the contents of images.

[llustrates the
modularity of the

autoencoder, 2
COhSiSting Of an A woman is throwing a frisbee in a park. Adogis star;&;ﬁg on a hardwood floor.
encoder (vision —
deep CNN) and a a o <
decoder (language ‘ —
generating RNN). i :
:;iet(t::jyg:a_rle:i:tir-\g on a bed with ﬁgt:)eu\?vaotfew sitting on a boat

Xu, K., Lei Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R. Richard S. Zemel, R. S., and
Bengio, Y. Show, attend and tell: neural image caption generation with visual attention. In Proceedings of
the 32nd International Conference on Machine Learning (ICML), Lille, France, July, 2015.
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A few examples where it failed

A man wearing a hat and
a hat on a skateboard.

A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone
with a surfboard. with a large pizza. while another man watches.

I “ LINKOPING
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Deep learning: A very recent example

An Al defeated a human professional for
the first time in the ancient game of Go

Atlast — a computer program that
can beat achampion Go player P44

ALL SYSTEMS GO

Silver, D. et al. Mastering the game of Go with deep neural networks and tree search, Nature, Vol 529,
484-489 (2016)
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Outline
1. Introduction via three recent applications
2. What is a neural network (NN)?
a) Concrete example for regression
b) Learning and regularization
3. What is a deep neural network?
4. Learning deep neural networks
a) Pre-training
b) Defining and learning the autoencoder
5. Developing and learning a deep dynamical model
a) Problem formulation
b) Deep dynamical model
6. Some pointers, summary and the future
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Constructing an NN for regression

A neural network (NN) is a nonlinear function y = gg(u)
from an input variable u to an output variable y
parameterized by 6.

Linear regression
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Constructing an NN for regression

A neural network (NN) is a nonlinear function y = gg(u)
from an input variable u to an output variable y
parameterized by 6.

Linear regression models the relationship between a continuous
target variable ¢ and an input variable u,

D
Z/:Zwiui+b+€: 0Tu +e,
i=1
where € is noise and @ is the parameters composed by the “weights”
w; and the offset (“bias”) term b,
o=(0b w wy - wp)',

u:(l UL Uy e uD)T.
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Generalized linear regression

We can generalize this by introducing nonlinear transformations of
the predictor 6" u,

y = f(6Tu).
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Generalized linear regression

We can generalize this by introducing nonlinear transformations of
the predictor 6" u,

y = f(6Tu).

Let us consider an example of a feed-forward NN, indicating that
the information flows from the input to the output layer.
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NN for regression — an example

1. Form M linear combinations of the input u € R”

D
a;”:Zwﬁ)ui—l—b;l), j=1,...., M.
i=1

10
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NN for regression — an example

1. Form M linear combinations of the input u € R”
D
1 1 1 .
ag):Zij)ui—l—bg), j=1,...., M.
i=1

2. Apply a nonlinear transformation

zj:f<a§1)), j=1..., M.

10
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NN for regression — an example

1. Form M linear combinations of the input u € R”
D
1 1 1 .
ag):Zij)ui—l—bg), j=1,...., M.
i=1

2. Apply a nonlinear transformation
zj:f<a§1)), j=1..., M.

3. Form M, linear combinations of z € RM

M
yk:ZIU,E:j)zj+b£%), k=1,...,M,.
j=1

10
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NN for regression — an example

M D
Ik (0) = Z 11),(3.)f <Z wé?ui + b'§1)> + b;f)
j=1 i=1
Inputs Hidden layer Qutput layer

11
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Multi-layer neural networks

We can think of the neural network as a sequential /recursive
construction of several generalized linear regressions.

Each layer in a multi-layer NN is modelled as
20D — ¢ (W(m)z(n I b(m)) 7

starting with the input z(°) = u. (The nonlinearity operates
element-wise.)
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Multi-layer neural networks

We can think of the neural network as a sequential /recursive
construction of several generalized linear regressions.

Each layer in a multi-layer NN is modelled as
20D — ¢ (W(m)Z(Z) I b(m)) ,

starting with the input z(°) = u. (The nonlinearity operates
element-wise.)

The scalar nonlinear function f(-) is what makes the neural network
nonlinear. Common functions are f(z) = 1/(1 +e™?),
f(z) = tanh(z) and f(z) = max(0, z).

The so-called rectified linear unit (ReLU) f(z) = max(0, z) is
heavily used for deep architectures.
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Training a NN
The final layer z(") of the network is used for making a prediction
y(0) = z1) and we train the network by employing:

1. A set of training data.
2. A cost function L (y(0),y).

3. An iterative scheme to optimize the cost function

N
J(B) = Z ‘C (yn(e)vyn) .
n=1
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Training a NN
The final layer z(") of the network is used for making a prediction
y(0) = z1) and we train the network by employing:

1. A set of training data.
2. A cost function L (y(0),y).

3. An iterative scheme to optimize the cost function

N
J(B) = Z ‘C (yn(e)vyn) .
n=1

Training a NN does involve a lot of engineering skill and is more of
an art than a mathematically rigorous exercise.

13
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Backpropagation

Recall our example network again:

M D
a(0) =3 wf <Z wiu; + bﬁ”) + b7

j=1 i=1

14
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Backpropagation
Recall our example network again:
M D
a(0) =3 wf <Z wiu; + bfj”) + b
j=1 i=1

In solving the optimization problem

6 = argmin J(0)
0

we typically employ gradient methods using V.J(0).

14
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Backpropagation
Recall our example network again:
M D
a(0) =3 wf <Z wiu; + bfj”) + b
j=1 i=1

In solving the optimization problem

6 = argmin J(0)
0

we typically employ gradient methods using V.J(0).

Backpropagation amounts to computing the gradients via
(recursive) use of the chain rule, combined with reuse of
information that is needed for more than one gradient.

14
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Tuning the model complexity

A neural network is a nonlinear parametric model that is built by
recursively applying generalized linear regression,

y=fBo...0fMo f(O)(u)_

LINKOPING
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Tuning the model complexity

A neural network is a nonlinear parametric model that is built by
recursively applying generalized linear regression,

y=fBo...0fMo f(O)(u)_

Problem: As with any parametric method overfitting will occur if
the number of free parameters is too large w.r.t. the training data.

The model complexity typically needs to be tuned.

15
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Tuning the model complexity

A neural network is a nonlinear parametric model that is built by
recursively applying generalized linear regression,

y=fBo...0fMo f(O)(u).

Problem: As with any parametric method overfitting will occur if
the number of free parameters is too large w.r.t. the training data.

The model complexity typically needs to be tuned.

Weight decay: Regularize using an Euclidean norm

J(6) = J(8) + Al16]I*.

15
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Tuning the model complexity

A neural network is a nonlinear parametric model that is built by
recursively applying generalized linear regression,

y=fBo...0fMo f(O)(u).

Problem: As with any parametric method overfitting will occur if
the number of free parameters is too large w.r.t. the training data.

The model complexity typically needs to be tuned.

Weight decay: Regularize using an Euclidean norm

J(6) = J(8) + Al16]I*.

Weight elimination: Regularize using a zero-forcing term h(-)

J(0) = J(6) + \h(6).

15
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Networks with built-in constraints

Weight sharing is a constraint that forces certain connections in the
network to have the same weights.

16
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Networks with built-in constraints

Weight sharing is a constraint that forces certain connections in the
network to have the same weights.

Convolutional networks (ConvNets) Makes use of the weight
sharing idea. Nodes forms groups of 2D arrays.

Particularly successful in machine vision.

The convNet is a notable early successful deep architecture.

16
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Outline

1.
2.

Introduction via three recent applications
What is a neural network (NN)?

a) Concrete example for regression

b) Learning and regularization
What is a deep neural network?
Learning deep neural networks

a) Pre-training

b) Defining and learning the autoencoder

. Developing and learning a deep dynamical model

a) Problem formulation
b) Deep dynamical model

. Some pointers, summary and the future

17
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Deep neural networks

Deep learning methods allow a machine to make use of raw data to
automatically discover the representations (abstractions) that are
necessary to solve a particular task.

18
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Deep neural networks

Deep learning methods allow a machine to make use of raw data to
automatically discover the representations (abstractions) that are
necessary to solve a particular task.

It is accomplished by using multiple levels of representation. Each
level transforms the representation at the previous level into a new
and more abstract representation,

L0+ — ¢ (W(1+1)Z(1) I b(m)) ,

starting from the input (raw data) z(®) = u.
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Deep neural networks

Deep learning methods allow a machine to make use of raw data to
automatically discover the representations (abstractions) that are
necessary to solve a particular task.

It is accomplished by using multiple levels of representation. Each
level transforms the representation at the previous level into a new
and more abstract representation,

L0+ — ¢ (W““)z(” I b(m)) ,

starting from the input (raw data) z(®) = u.

Key aspect: The layers are not designed by human engineers, they
are generated from (typically lots of) data using a learning procedure
and lots of computations.

LINKOPING
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Hierarchy of features

Example: Image classification

The input layer represents
an image and the output
layer an object identity.
Each hidden layer extracts
increasingly abstract
features.

Niklas Wahlstrém

February 10, 2016 19

Output
(object identity)

3rd hidden layer
(obejct parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)
[

Visable layer
(input pixels)

Zeiler, M. D. and Fergus, R. Visualizing and understanding convolutional networks

Computer Vision - ECCV (2014).
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Training deep neural networks

The main problem with a deep architecture is the training. The
strategy sketched above will not work.

The breakthrough came 10 years ago:

Hinton, G. E., Osindero, S. and Teh, Y-W. A Fast Learning Algorithm for Deep Belief Nets. Neural
Computation, 18, 1527-1554, 2006.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. Greedy layer-wise training of deep networks. In
Proc. Advances in Neural Information Processing Systems (NIPS) 19, 153-160, 2006.

Ranzato, M., Poultney, C., Chopra, S., and LeCun, Y. Efficient learning of sparse representations with an
energy-based model. In Proc. Advances in Neural Information Processing Systems (NIPS) 19, 1137-1144,
2006.
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Training deep neural networks

The main problem with a deep architecture is the training. The
strategy sketched above will not work.

The breakthrough came 10 years ago:

Hinton, G. E., Osindero, S. and Teh, Y-W. A Fast Learning Algorithm for Deep Belief Nets. Neural
Computation, 18, 1527-1554, 2006.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. Greedy layer-wise training of deep networks. In
Proc. Advances in Neural Information Processing Systems (NIPS) 19, 153-160, 2006.

Ranzato, M., Poultney, C., Chopra, S., and LeCun, Y. Efficient learning of sparse representations with an
energy-based model. In Proc. Advances in Neural Information Processing Systems (NIPS) 19, 1137-1144,
2006.

Key idea: Careful initialization by training each layer individually
using an unsupervised algorithm. Referred to as pre-training.

Finally, a supervised algorithm (e.g. backpropagation) is used to
fine-tune the parameters 6 using the result from the pre-training as
initial values.

LINKOPING
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Pre-training
GO R 3)

>O>®
OIS

A
v,

Pre-training evolves sequentially from input to output. Here:

e 3 stages of unsupervised training

o 1 stage of supervised training

LINKOPING
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Pre-training — RBM
Restricted Boltzmann machine (RBM): an undir. graphical
model with no connections among nodes of the same layer.

u Z

22
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Pre-training — RBM

Restricted Boltzmann machine (RBM): an undir. graphical

model with no connections among nodes of the same layer.

We have an observed input layer u and
an unobserved output layer z.

u Z
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Pre-training — RBM
Restricted Boltzmann machine (RBM): an undir. graphical
model with no connections among nodes of the same layer.
We have an observed input layer u and
an unobserved output layer z.

u Z

Training strategy: Maximum likelihood

6 = arg max po(u),
0
where pg(u) is found via marginalization,

po(u) = /pg(u, z)dz.
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Pre-training — RBM

Restricted Boltzmann machine (RBM): an undir. graphical

model with no connections among nodes of the same layer.

We have an observed input layer u and
an unobserved output layer z.

u Z

Training strategy: Maximum likelihood

6 = arg max po(u),
0
where pg(u) is found via marginalization,

po(u) = /pg(u, z)dz.

The RBM is a generative model, which implies that we can
simulate the output, which is then the input to the next layer.
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Intuitive interpretation

Interpret the hidden layers as feature vectors and think of the deep
architecture as a scheme for learning a hierarchy of features.

23
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Intuitive interpretation
Interpret the hidden layers as feature vectors and think of the deep
architecture as a scheme for learning a hierarchy of features.
We leave the feature generation, as much as possible, to the

machine.

23
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Intuitive interpretation

Interpret the hidden layers as feature vectors and think of the deep
architecture as a scheme for learning a hierarchy of features.

We leave the feature generation, as much as possible, to the
machine.

The unsupervised learning in the pre-training step is a way of
discovering information hidden in the data. This is a way of learning
underlying regularities in the data.

23
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Intuitive interpretation

Interpret the hidden layers as feature vectors and think of the deep
architecture as a scheme for learning a hierarchy of features.

We leave the feature generation, as much as possible, to the
machine.

The unsupervised learning in the pre-training step is a way of
discovering information hidden in the data. This is a way of learning
underlying regularities in the data.

Pre-training can in this way be thought of as a regularizer that
forces the parameters to “good” regions, by exploiting extra
information from the unsupervised learning stage.

23
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Intuitive interpretation

Interpret the hidden layers as feature vectors and think of the deep
architecture as a scheme for learning a hierarchy of features.

We leave the feature generation, as much as possible, to the
machine.

The unsupervised learning in the pre-training step is a way of
discovering information hidden in the data. This is a way of learning
underlying regularities in the data.

Pre-training can in this way be thought of as a regularizer that
forces the parameters to “good” regions, by exploiting extra
information from the unsupervised learning stage.

There is still no theoretical justification as to why these deep
networks exhibit such good generalization performance.... That is a
good problem to solve.

23
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Autoencoder

The autoencoder is an Input layer Hidden layer Output layer

unsupervised learning
procedure for dimensionality
reduction.

u1l U1l

It is a NN that learns
compressed representations z
of high-dimensional data u,
where dim(u) > dim(z).

Encoder Decoder

Encoder: z = fe(u) = f(IW u+ b).
Decoder: 1 = fy4(z) = f(W Tz +b).

LINKOPING
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Training the autoencoder

The unknown parameters
0 ={W,b,W, b}
are estimated by minimizing the reconstruction error
e=u-—1u(0),

using some cost function J(€), for example LS

N
J(0) =" |[u, — ,(6)]
n=1

25
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Training the autoencoder

The unknown parameters
0 ={W,b,W, b}
are estimated by minimizing the reconstruction error
e=u-—1u(0),

using some cost function J(€), for example LS

N
J(0) =" |[u, — ,(6)]
n=1

After the training the encoder and the decoder will (by construction)
be approximate inverses of each other,

fa(fe(u)) = u.

LINKOPING
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Autoencoder

We can then easily transform either u into z or z into @ using either
the encoder

z=f.(WTu+b),

or the decoder,

The access to both of these two mappings is important for certain
applications (such as the deep dynamical model).
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Autoencoder

We can then easily transform either u into z or z into @ using either
the encoder

z=f.(WTu+b),

or the decoder,

The access to both of these two mappings is important for certain
applications (such as the deep dynamical model).

If fe(-) is chosen to be the identity (i.e. z=1WTu+b) and
dimu < dimz then the autoencoder is equivalent to PCA. Hence,
the autoencoder is a nonlinear generalization of PCA.
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Deep autoencoder

The deep autoencoder is simply an autoencoder with several hidden
layers.

Again, careful initialization is important for this to work, using the
same pre-training as described before.

Hinton, G. E. and Salakhutdinov, R. R. Reducing the Dimensionality of Data with Neural Networks. Science,

313, 504-507, 2006.

27
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Outline

1.
2.

Introduction via three recent applications
What is a neural network (NN)?
a) Concrete example for regression
b) Learning and regularization
What is a deep neural network?
Learning deep neural networks
a) Pre-training
b) Defining and learning the autoencoder
Developing and learning a deep dynamical model

a) Problem formulation
b) Deep dynamical model

. Some pointers, summary and the future

28
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Motivation

e Vision: fully autonomous systems that learn by themselves from
raw pixel data.

e This work: Modeling of high-dimensional pixel data

e Strategy: A deep dynamical model is proposed that contains a
low-dimensional dynamical model.

E -.
Feature at time t-1 Feature at time t

Image at time t-1 Image at time t
Yer

t

N. Wahlstrém, T. B. Schén, M. P. Deisenroth Learning deep dynamical models from image pixels

The 17th IFAC Symposium on System Identification (SYSID)
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Problem Formulation

Problem formulation: Modeling of high-dimensional pixel data

Output

Example: Video stream of a
pendulum
e Input: Torque of a
pendulum

e Output: Pixel values of Input

an 11 x 11 image M\/\/J\WW\/\}

) 10 20 30 40 50 60 70 80 %0 100
Time

Torque

30

LINKOPING
II.“ UNIVERSITY



Deep Dynamical Models Niklas Wahlstrém February 10, 2016 30

Problem Formulation

Problem formulation: Modeling of high-dimensional pixel data

Output

Example: Video stream of a
pendulum
e Input: Torque of a
pendulum

e Output: Pixel values of Input

an 11 x 11 image M\/\/J\WW\/\}

o 10 20 30 40 50 60

Torque

ime

= [te]+]
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The Autoencoder

Notation: Hidden layer
Input layer "bottleneck”

e y; - High-dim. observations

e 7, - Low-dim. features

Output layer

31
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The Autoencoder

Notation:
e y; - High-dim. observations

e 7, - Low-dim. features

Model components:

1. Encoder: zj, = fe(y}; 0F)

Input layer

February 10, 2016
Hidden layer
"bottleneck” Output layer

Encoder

31
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The Autoencoder

Notation:
e y; - High-dim. observations

e 7, - Low-dim. features

Model components:
1. Encoder: zj, = fe(y}; 0F)
2. Decoder: 3R = f4(zy;0p)

Input layer

February 10, 2016
Hidden layer
"bottleneck” Output layer

Encoder Decoder

31
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The Autoencoder

Notation: Hidden layer
. . . Input layer "bottleneck” Output layer
e y; - High-dim. observations J

e 7, - Low-dim. features

Model components:
1. Encoder: z; = fe(yy; 0)
2. Decoder: ?,‘3 = f4(zx;0p)

Encoder Decoder

Reconstruction error:
N ~R
VR(0E,00) = > 1y |lyi— ¥ (O, 6p)|?
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Deep Dynamical Model

Notation: High-dim
e y, - High-dim. observations ~ °bservations
e 7, - Low-dim. features
Features
e uy - Inputs

February 10, 2016

32

LINKOPING
II.“ UNIVERSITY



Deep Dynamical Models Niklas Wahlstrom

Deep Dynamical Model

Notation: High-dim
e y, - High-dim. observations ~ °bservations
e 7, - Low-dim. features
Features
e uy - Inputs
Model components: Inputs

1. Encoder: zj, = fo(y}; 0F)
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Deep Dynamical Model

Notation: High-dim.
e y, - High-dim. observations ~ °bservations
o 7, - Low-dim. features Features
e uy - Inputs

Model components: Inputs
1. Encoder: z; = fo(yy; 0g)

2. Prediction model: z; 1, = f(zk, ug, .. .,
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Deep Dynamical Model

Notation: High-dim
e y; - High-dim. observations

e 7, - Low-dim. features

Features

e uy - Inputs

Model components: Inputs

1. Encoder: z; = fe(yy; O)
2. Prediction model: z;_ 1, = f(zg, ug, . .

3. Decoder: §5+1\k = £4(Zpy 1% Op)

observations

February 10, 2016

< Z—pn41> Ug—n+13 GP)
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Deep Dynamical Model

Notation: High-dim.
e y, - High-dim. observations ~ °bservations
e 75 - Low-dim. features Features
e uy - Inputs

Model components: Inputs
1. Encoder: z;, = fe(yy; O€)
2. Prediction model: Ek+1|k = f(zg,ug,. .. ,zk_n+1,uk—n+1;9P)
3. Decoder: §Z+l\k = f4(Zp+1)%;Op)

Prediction error:

Ve(6E,00,0p) = 31, Y141 — Yio1s(O6, 00, 0p)12

32
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Training

Key ingredient: The reconstruction error and the prediction error
are minimized simultaneously!

(5E,§D,§P) = argmin Vr(0g, 0p) + Vp(Ok, Op, Op)
0e,0p,60p

N
Vk(0g,60) = > lly, — Y1 (0, 601,
=1
N-1
Ve (08,00, 0p) = Y V441 — Yir1x(0k, 60, 6p)|1*.

k=n
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Deep Dynamical Models

Experiment: Pendulum

e Layers in
encoder/decoder: 4

o Latent dim.:
dim(z) =1

e Order of prediction
model: n =4

Niklas Wahlstrém

Output

February 10, 2016

Model output

Torque

34
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Experiment: Pendulum

e Layers in Output Model output

encoder/decoder: 4
o Latent dim.:
dim(z) =1
e Order of prediction
model: n =4

Torque

L L L
40 50 60
Time

K< > [>[5H] [= e +]

100
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Experiment: Agent in a Planar System

Output

o Input: Offset in x—dir.
(u1) and y—dir. (u2)

e Qutput: Pixel values of
a 51 x 51 image

e Latent dim.: dim(z)=2

35
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Experiment: Agent in a Planar System

Output

o Input: Offset in x—dir.
(u1) and y—dir. (u2)

e Qutput: Pixel values of
a 51 x 51 image

e Latent dim.: dim(z)=2

wuy

| I
v o mh oo
=3
>

L L L L L L L L
20 30 40 50 60 70 80 90 100
T T T T T T T T

Uy

L L L L
40 50 60 70 100
Time

K<<l > 1] [=ote] +]

o
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Experiment: Agent in a Planar System

Separate vs. Simultaneous Training

True frame
Yk+0 Yik+1 Yi+2  Yk+3 Yt Yiets Yit6 YT Yk+s

Simultaneous training

Visol Yirih Yisolk Yessk Yheale Yissik Yesole  Yherlk Yieslk

Separate training

Yitolk  Yisllk  Yk+2lk ?A—JM 9“4/‘ ywan .?Ho\k yH»TL §A+~U.

36
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Experiment: Agent in a Planar System

22
o

Simultaneous Training
Interation: 0

-08 -06 -04 -02 0 02 04 06

Separate Training

Interation: 0

0.8
0.6
04

0.2

22
°

1 -08 -06 -04 -02 0 0.2 0.4 0.6 08 1

LINKOPING
UNIVERSITY



Deep Dynamical Models

Niklas Wahlstrém

February 10, 2016 37

Experiment: Agent in a Planar System

22
°

Simultaneous Training
Interation: 0

-08 -06 -04 -02 0 02 04 06

Separate Training

Interation: 0

0.8
0.6
04

0.2

22
°

1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1
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Experiment: Agent in a Planar System

Simultaneous Training Separate Training
Interation: 450 Interation: 450
1 1
08 - ooy 08
06 -‘.c o® e :'.: B 06
: L]
0.4 :’. -: .~ ° S e ... 04
v . o o ° o °.
02 . o o0 °° .k ° .0‘. 02
. ° ¢ ¢ F} .. [ ]
S o ® . o S .'. . & o
o o K

1 L L L L L L L ) =
-1 -08 -06 -04 -02 0 02 04 06 08 1 -1 -08 -06 -04 -02 0 02 04 06
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Experiment: Agent in a Planar System

Simultaneous Training Separate Training
Interation: 450 Interation: 450
1 1
08 - ooy 08
06 -‘.c oo oo :.o: oW 06
: L]
0.4 :’. -: .~ ° S ... 04
v . o e ° o .
02 . o oo °° .k ° .0‘. 02
. ° c ¢ F} .. [ ]
S o ® . o o .'. ) & o
o o K

1 L L L L L L L , =
-1 -08 -06 -04 -02 0 02 04 06 08 1 -1 -08 -06 -04 -02 0 02 04 06
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Deep Dynamical Models for Control

The DDM is used to learn a closed-loop policy via nonlinear model
predictive control (MPC). Future control signals are optimized by
minimizing

UGy -+, UR_; € argmin Z |Zk_zrefH +)\H“kH

U0: K —1
where zef = fc(Yref g, is the feature of the reference image. When
the control sequence ug, ..., uj,_; is determined, the first control uj
is applied to the system.

Hence, the MPC is only applied in the low-dimensional feature
space!
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Deep Dynamical Models for Control

Proposed algorithm

Follow a random control strategy
and record data
loop
Update DDM with all data
collected so far
fork=0to N —1do
- Get 2z, .eey Zk—n41 Via
encoder.
- uj ¢ e-greedy MPC policy
using DDM prediction.
- Apply uj, and record data.
end for
end loop

N. Wahlstrém, T. B Schon, and M. P. Deisenroth

-1 -08 -06 -04 -02 0 02 04 06 08 1
z

Green: Previous feature values
Cyan: Current feature

Red: Reference feature

Yellow: 15-step ahead prediction

From Pixels to Torques: Policy Learning with Deep Dynamical Models. ArXiv e-prints 1502.02251
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Experiment: Control of a Pendulum from Pixels Only

e Ref. image: Pendulum pointing upwards
e 100 images in each trial
o After 15 trials, a good controller was learned

1st trial 4th trial 7th trial
P I
E=)
2
v 0 == ——————
2 e N ‘N
=
<
- —
0 10 20
15th trial
P I
=
£
) 0
e
= L
<
.
. -
0 10 20 0 10 20 0 10 20
Time [s] Time [s] Time [s]
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Application: Control of Two-Link Arm from Pixels Only

Trial: 3 Frame: 94

e Ref. image: Arm pointing upwards

e 1000 images in each trial

o After 8-9 trials a fairly good
controller was learned.

J.-A. M. Assael, N. Wahlstrém, T. B. Schdn, and M. P. Deisenroth. Data-Efficient Learning of
Feedback Policies from Image Pixels using Deep Dynamical Models. In Deep Reinforc. Learning WS
at the Conference on Neural Information Processing Systems (NIPS), Montréal, Canada, Dec. 2015.
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Application: Control of Two-Link Arm from Pixels Only

Trial: 1 Frame: 1

e Ref. image: Arm pointing upwards

e 1000 images in each trial

o After 8-9 trials a fairly good
controller was learned.

K<<l > [] =ote] +]

J.-A. M. Assael, N. Wahlstrém, T. B. Schdn, and M. P. Deisenroth. Data-Efficient Learning of
Feedback Policies from Image Pixels using Deep Dynamical Models. In Deep Reinforc. Learning WS
at the Conference on Neural Information Processing Systems (NIPS), Montréal, Canada, Dec. 2015.
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Outline

1.
2.

Introduction via three recent applications
What is a neural network (NN)?
a) Concrete example for regression
b) Learning and regularization
What is a deep neural network?
Learning deep neural networks
a) Pre-training
b) Defining and learning the autoencoder
Developing and learning a deep dynamical model

a) Problem formulation
b) Deep dynamical model

. Some pointers, summary and the future

42
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Some pointers

Key publication channels in machine learning, NIPS and ICML
From NIPS in December ( nips.cc/Conferences/2015 ) three of the
six tutorials deals with deep learning:
1. G. Hinton, Y. Bengio and Y. LeCun, Deep learning
https://nips.cc/Conferences/2015/Schedule?event=4891
2. B. Dally, High-performance hardware for Machine Learning
nips.cc/Conferences/2015/Schedule?event=4894
3. J. Dean, Large-scale distributed systems for training NN
nips.cc/Conferences/2015/Schedule?event=4895
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Some pointers

Key publication channels in machine learning, NIPS and ICML
From NIPS in December ( nips.cc/Conferences/2015 ) three of the
six tutorials deals with deep learning:
1. G. Hinton, Y. Bengio and Y. LeCun, Deep learning
https://nips.cc/Conferences/2015/Schedule?event=4891
2. B. Dally, High-performance hardware for Machine Learning
nips.cc/Conferences/2015/Schedule?event=4894
3. J. Dean, Large-scale distributed systems for training NN
nips.cc/Conferences/2015/Schedule?event=4895

A well written and timely introduction:

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning, Nature, Vol 521, 436—444.
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Some pointers

Key publication channels in machine learning, NIPS and ICML
From NIPS in December ( nips.cc/Conferences/2015 ) three of the
six tutorials deals with deep learning:
1. G. Hinton, Y. Bengio and Y. LeCun, Deep learning
https://nips.cc/Conferences/2015/Schedule?event=4891
2. B. Dally, High-performance hardware for Machine Learning
nips.cc/Conferences/2015/Schedule?event=4894
3. J. Dean, Large-scale distributed systems for training NN
nips.cc/Conferences/2015/Schedule?event=4895

A well written and timely introduction:

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning, Nature, Vol 521, 436—444.
You will also find more material than you can possibly want here

http://deeplearning.net/
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Summary (1/11)

A neural network (NN) is a nonlinear function y = gg(u)
from an input variable u to an output variable y
parameterized by 6.
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A neural network (NN) is a nonlinear function y = gg(u)
from an input variable u to an output variable y
parameterized by 6.

We can think of an NN as a sequential/recursive construction of
several generalized linear regressions.
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Summary (1/11)

A neural network (NN) is a nonlinear function y = gg(u)
from an input variable u to an output variable y
parameterized by 6.

We can think of an NN as a sequential/recursive construction of
several generalized linear regressions.

Deep learning refers to learning NNs with several hidden layers.
Allows for data-driven models that automatically learns rep. of data
(features) with multiple layers of abstraction.

LINKOPING
II.“ UNIVERSITY



Deep Dynamical Models Niklas Wahlstrém February 10, 2016 44

Summary (1/11)

A neural network (NN) is a nonlinear function y = gg(u)
from an input variable u to an output variable y
parameterized by 6.

We can think of an NN as a sequential/recursive construction of
several generalized linear regressions.

Deep learning refers to learning NNs with several hidden layers.
Allows for data-driven models that automatically learns rep. of data
(features) with multiple layers of abstraction.

The deep autoencoder makes use of a multi-layer “encoder” network
to transform high-dimensional data into a low-dimensional
code/feature and a similar “decoder” network is used to recover the
data from the code.
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Summary (11/11)

Deep dynamical model:
e Model for high-dimensional pixel data
e Simultaneous training is crucial

e Application: Control based on pixel data only

45
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The future

The best predictive performance is obtained from highly flexible
models (especially when large datasets are used). There are basically
two ways of achieving flexibility:

1. Using models with a large number of parameters compared to
the data set (e.g. deep NN).

2. Models using non-parametric components, e.g. Gaussian
processes.

46
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The future

The best predictive performance is obtained from highly flexible
models (especially when large datasets are used). There are basically
two ways of achieving flexibility:

1. Using models with a large number of parameters compared to
the data set (e.g. deep NN).

2. Models using non-parametric components, e.g. Gaussian
processes.

Use the network also for “attention” and control. Use reinforcement
learning to decide where to look for new data (resulting in new
knowledge).

Deep reinforcement learning workshop at NIPS in december.
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