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My thesis

Three areas:

• Magnetic tracking

• Extended target tracking

• Deep dynamical models for
control
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Deep Learning: A recent example
First steps towards an autonomous system that learns by
itself from raw pixel data.

Trial: 3 Frame: 94

J.-A. M. Assael, N. Wahlström, T. B. Schön, and M. P. Deisenroth. Data-E�cient Learning of
Feedback Policies from Image Pixels using Deep Dynamical Models. In Deep Reinforc. Learning WS
at the Conference on Neural Information Processing Systems (NIPS), Montréal, Canada, Dec. 2015.

• Deep autoencoder network +
nonlinear dynamical model

• Model predictive control (MPC)

• Ref. value: zref = fd(yref)

• The model is automatically
improved (in an iterative manner)
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Deep Learning: Another recent example

Automatically learn how to describe the contents of images.

Illustrates the
modularity of the
autoencoder,
consisting of an
encoder (vision
deep CNN) and a
decoder (language
generating RNN).

Neural Image Caption Generation with Visual Attention

Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. “soft”
(top row) vs “hard” (bottom row) attention. (Note that both models generated the same captions in this example.)

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

two variants: a “hard” attention mechanism and a “soft”
attention mechanism. We also show how one advantage of
including attention is the ability to visualize what the model
“sees”. Encouraged by recent advances in caption genera-
tion and inspired by recent success in employing attention
in machine translation (Bahdanau et al., 2014) and object
recognition (Ba et al., 2014; Mnih et al., 2014), we investi-
gate models that can attend to salient part of an image while
generating its caption.

The contributions of this paper are the following:
• We introduce two attention-based image caption gen-

erators under a common framework (Sec. 3.1): 1) a
“soft” deterministic attention mechanism trainable by
standard back-propagation methods and 2) a “hard”
stochastic attention mechanism trainable by maximiz-
ing an approximate variational lower bound or equiv-
alently by REINFORCE (Williams, 1992).

• We show how we can gain insight and interpret the
results of this framework by visualizing “where” and
“what” the attention focused on. (see Sec. 5.4)

• Finally, we quantitatively validate the usefulness of
attention in caption generation with state of the art
performance (Sec. 5.3) on three benchmark datasets:
Flickr8k (Hodosh et al., 2013) , Flickr30k (Young
et al., 2014) and the MS COCO dataset (Lin et al.,
2014).

2. Related Work
In this section we provide relevant background on previous
work on image caption generation and attention. Recently,
several methods have been proposed for generating image
descriptions. Many of these methods are based on recur-
rent neural networks and inspired by the successful use of
sequence to sequence training with neural networks for ma-
chine translation (Cho et al., 2014; Bahdanau et al., 2014;
Sutskever et al., 2014). One major reason image caption
generation is well suited to the encoder-decoder framework
(Cho et al., 2014) of machine translation is because it is
analogous to “translating” an image to a sentence.

The first approach to use neural networks for caption gener-
ation was Kiros et al. (2014a), who proposed a multimodal
log-bilinear model that was biased by features from the im-
age. This work was later followed by Kiros et al. (2014b)
whose method was designed to explicitly allow a natural
way of doing both ranking and generation. Mao et al.
(2014) took a similar approach to generation but replaced a
feed-forward neural language model with a recurrent one.
Both Vinyals et al. (2014) and Donahue et al. (2014) use
LSTM RNNs for their models. Unlike Kiros et al. (2014a)
and Mao et al. (2014) whose models see the image at each
time step of the output word sequence, Vinyals et al. (2014)
only show the image to the RNN at the beginning. Along

Xu, K., Lei Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R. Richard S. Zemel, R. S., and
Bengio, Y. Show, attend and tell: neural image caption generation with visual attention. In Proceedings of
the 32nd International Conference on Machine Learning (ICML), Lille, France, July, 2015.
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A few examples where it failed

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st
from a multinouilli distribution defined by Equation 8.

s̃t ∼ MultinoulliL({αi})

∂Ls
∂W

≈ 1

N

N∑

n=1

[
∂ log p(y | s̃n,a)

∂W
+

log p(y | s̃n,a)∂ log p(s̃
n | a)

∂W

]
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
kth mini-batch, the moving average baseline is estimated
as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9× bk−1 + 0.1× log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value α. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

∂Ls
∂W

≈ 1

N

N∑

n=1

[
∂ log p(y | s̃n,a)

∂W
+

λr(log p(y | s̃n,a)− b)
∂ log p(s̃n | a)

∂W
+ λe

∂H[s̃n]

∂W

]

where, λr and λe are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, φ ({ai} , {αi})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by α.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =

L∑

i=1

αt,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
φ ({ai} , {αi}) =

∑L
i αiai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft α
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Deep learning: A very recent example

An AI defeated a human professional for
the �rst time in the ancient game of Go

Silver, D. et al. Mastering the game of Go with deep neural networks and tree search, Nature, Vol 529,
484�489 (2016)
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Outline

1. Introduction via three recent applications

2. What is a neural network (NN)?

a) Concrete example for regression
b) Learning and regularization

3. What is a deep neural network?

4. Learning deep neural networks

a) Pre-training
b) De�ning and learning the autoencoder

5. Developing and learning a deep dynamical model

a) Problem formulation
b) Deep dynamical model

6. Some pointers, summary and the future
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Constructing an NN for regression

A neural network (NN) is a nonlinear function y = gθ(u)
from an input variable u to an output variable y

parameterized by θ.

Linear regression

models the relationship between a continuous
target variable y and an input variable u,

y =

D∑

i=1

wiui + b+ ε = θTu + ε,

where ε is noise and θ is the parameters composed by the �weights�
wi and the o�set (�bias�) term b,

θ =
(
b w1 w2 · · · wD

)T
,

u =
(
1 u1 u2 · · · uD

)T
.
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Generalized linear regression

We can generalize this by introducing nonlinear transformations of
the predictor θTu,

y = f(θTu).

Let us consider an example of a feed-forward NN, indicating that
the information �ows from the input to the output layer.
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NN for regression � an example

1. Form M linear combinations of the input u ∈ RD

a
(1)
j =

D∑

i=1

w
(1)
ji ui + b

(1)
j , j = 1, . . . ,M.

2. Apply a nonlinear transformation

zj = f
(
a
(1)
j

)
, j = 1, . . . ,M.

3. Form My linear combinations of z ∈ RM

yk =

M∑

j=1

w
(2)
kj zj + b

(2)
k , k = 1, . . . ,My.
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NN for regression � an example

ŷk(θ) =

M∑

j=1

w
(2)
kj f

(
D∑

i=1

w
(1)
ji ui + b

(1)
j

)
+ b

(2)
k

... ...

...

u1

u2

uD

z1

ŷ1

ŷMy

w
(1)
11 w

(2)
11

Inputs Hidden layer Output layer



Deep Dynamical Models Niklas Wahlström February 10, 2016 12

Multi-layer neural networks

We can think of the neural network as a sequential/recursive
construction of several generalized linear regressions.

Each layer in a multi-layer NN is modelled as

z(l+1) = f
(
W (l+1)z(l) + b(l+1)

)
,

starting with the input z(0) = u. (The nonlinearity operates
element-wise.)

The scalar nonlinear function f(·) is what makes the neural network
nonlinear. Common functions are f(z) = 1/(1 + e−z),
f(z) = tanh(z) and f(z) = max(0, z).

The so-called recti�ed linear unit (ReLU) f(z) = max(0, z) is
heavily used for deep architectures.
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Training a NN

The �nal layer z(L) of the network is used for making a prediction
ŷ(θ) = z(L) and we train the network by employing:

1. A set of training data.

2. A cost function L (ŷ(θ),y).

3. An iterative scheme to optimize the cost function

J(θ) =
N∑

n=1

L (ŷn(θ),yn) .

Training a NN does involve a lot of engineering skill and is more of
an art than a mathematically rigorous exercise.
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Backpropagation

Recall our example network again:

ŷk(θ) =

M∑

j=1

w
(2)
kj f

(
D∑

i=1

w
(1)
ji ui + b

(1)
j

)
+ b

(2)
k

In solving the optimization problem

θ̂ = arg min
θ

J(θ)

we typically employ gradient methods using ∇J(θ).

Backpropagation amounts to computing the gradients via
(recursive) use of the chain rule, combined with reuse of
information that is needed for more than one gradient.
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Tuning the model complexity
A neural network is a nonlinear parametric model that is built by
recursively applying generalized linear regression,

ŷ = f (L) ◦ · · · ◦ f (1) ◦ f (0)(u).

Problem: As with any parametric method over�tting will occur if
the number of free parameters is too large w.r.t. the training data.

The model complexity typically needs to be tuned.

Weight decay: Regularize using an Euclidean norm

J̃(θ) = J(θ) + λ‖θ‖2.

Weight elimination: Regularize using a zero-forcing term h(·)
J̃(θ) = J(θ) + λh(θ).
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Networks with built-in constraints

Weight sharing is a constraint that forces certain connections in the
network to have the same weights.

Convolutional networks (ConvNets) Makes use of the weight
sharing idea. Nodes forms groups of 2D arrays.

Particularly successful in machine vision.

The convNet is a notable early successful deep architecture.
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Deep neural networks

Deep learning methods allow a machine to make use of raw data to
automatically discover the representations (abstractions) that are
necessary to solve a particular task.

It is accomplished by using multiple levels of representation. Each
level transforms the representation at the previous level into a new
and more abstract representation,

z(l+1) = f
(
W (l+1)z(l) + b(l+1)

)
,

starting from the input (raw data) z(0) = u.

Key aspect: The layers are not designed by human engineers, they
are generated from (typically lots of) data using a learning procedure
and lots of computations.
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Hierarchy of features

Example: Image classi�cation

The input layer represents
an image and the output
layer an object identity.
Each hidden layer extracts
increasingly abstract
features.

Zeiler, M. D. and Fergus, R. Visualizing and understanding convolutional networks

Computer Vision - ECCV (2014).
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Training deep neural networks

The main problem with a deep architecture is the training. The
strategy sketched above will not work.

The breakthrough came 10 years ago:
Hinton, G. E., Osindero, S. and Teh, Y-W. A Fast Learning Algorithm for Deep Belief Nets. Neural
Computation, 18, 1527�1554, 2006.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. Greedy layer-wise training of deep networks. In
Proc. Advances in Neural Information Processing Systems (NIPS) 19, 153�160, 2006.

Ranzato, M., Poultney, C., Chopra, S., and LeCun, Y. E�cient learning of sparse representations with an
energy-based model. In Proc. Advances in Neural Information Processing Systems (NIPS) 19, 1137�1144,
2006.

Key idea: Careful initialization by training each layer individually
using an unsupervised algorithm. Referred to as pre-training.

Finally, a supervised algorithm (e.g. backpropagation) is used to
�ne-tune the parameters θ using the result from the pre-training as
initial values.
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Pre-training

... ...
...

...

...

u1

u2

uD

z(1) z(2) z(3)

ŷ1

ŷMy

Pre-training evolves sequentially from input to output. Here:

• 3 stages of unsupervised training

• 1 stage of supervised training
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Pre-training � RBM
Restricted Boltzmann machine (RBM): an undir. graphical
model with no connections among nodes of the same layer.

...
...

u z

We have an observed input layer u and
an unobserved output layer z.

Training strategy: Maximum likelihood

θ̂ = arg max
θ

pθ(u),

where pθ(u) is found via marginalization,

pθ(u) =

∫
pθ(u, z)dz.

The RBM is a generative model, which implies that we can
simulate the output, which is then the input to the next layer.
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Pre-training � RBM
Restricted Boltzmann machine (RBM): an undir. graphical
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Intuitive interpretation
Interpret the hidden layers as feature vectors and think of the deep
architecture as a scheme for learning a hierarchy of features.

We leave the feature generation, as much as possible, to the
machine.

The unsupervised learning in the pre-training step is a way of
discovering information hidden in the data. This is a way of learning
underlying regularities in the data.

Pre-training can in this way be thought of as a regularizer that
forces the parameters to �good� regions, by exploiting extra
information from the unsupervised learning stage.

There is still no theoretical justi�cation as to why these deep
networks exhibit such good generalization performance.... That is a
good problem to solve.
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Autoencoder

The autoencoder is an
unsupervised learning
procedure for dimensionality
reduction.

It is a NN that learns
compressed representations z
of high-dimensional data u,
where dim(u)� dim(z).

...

... ...

u1

u2

u3

un

z1

zm

û1

û2

û3

ûn

Input layer Hidden layer Output layer

︸ ︷︷ ︸
Encoder

︸ ︷︷ ︸
Decoder

Encoder: z = f e(u) = f(WTu + b).
Decoder: û = fd(z) = f(W̄Tz + b̄).
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Training the autoencoder
The unknown parameters

θ = {W,b, W̄ , b̄}
are estimated by minimizing the reconstruction error

e = u− û(θ),

using some cost function J(θ), for example LS

J(θ) =

N∑

n=1

‖un − ûn(θ)‖2.

After the training the encoder and the decoder will (by construction)
be approximate inverses of each other,

fd(f e(u)) ≈ u.
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Autoencoder

We can then easily transform either u into z or z into û using either
the encoder

z = f e(W
Tu + b),

or the decoder,

û = fd(W̄Tz + b̄).

The access to both of these two mappings is important for certain
applications (such as the deep dynamical model).

If f e(·) is chosen to be the identity (i.e. z = WTu + b) and
dimu < dim z then the autoencoder is equivalent to PCA. Hence,
the autoencoder is a nonlinear generalization of PCA.
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Deep autoencoder

The deep autoencoder is simply an autoencoder with several hidden
layers.

Again, careful initialization is important for this to work, using the
same pre-training as described before.

Hinton, G. E. and Salakhutdinov, R. R. Reducing the Dimensionality of Data with Neural Networks. Science,
313, 504�507, 2006.



Deep Dynamical Models Niklas Wahlström February 10, 2016 28

Outline

1. Introduction via three recent applications

2. What is a neural network (NN)?

a) Concrete example for regression
b) Learning and regularization

3. What is a deep neural network?

4. Learning deep neural networks

a) Pre-training
b) De�ning and learning the autoencoder

5. Developing and learning a deep dynamical model

a) Problem formulation
b) Deep dynamical model

6. Some pointers, summary and the future
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Motivation

• Vision: fully autonomous systems that learn by themselves from
raw pixel data.

• This work: Modeling of high-dimensional pixel data

• Strategy: A deep dynamical model is proposed that contains a
low-dimensional dynamical model.

N. Wahlström, T. B. Schön, M. P. Deisenroth Learning deep dynamical models from image pixels

The 17th IFAC Symposium on System Identi�cation (SYSID)
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Problem Formulation

Problem formulation: Modeling of high-dimensional pixel data

Example: Video stream of a
pendulum

• Input: Torque of a
pendulum

• Output: Pixel values of
an 11× 11 image
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Problem Formulation

Problem formulation: Modeling of high-dimensional pixel data

Example: Video stream of a
pendulum

• Input: Torque of a
pendulum

• Output: Pixel values of
an 11× 11 image
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The Autoencoder

Notation:

• yk - High-dim. observations

• zk - Low-dim. features

...

...
...
... ...

yk,1

yk,2

yk,3

yk,n

zk,1

zk,m

ŷk,1

ŷk,2

ŷk,3

ŷk,n

Input layer
Hidden layer
�bottleneck� Output layer
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k = fd(zk;θD)



Deep Dynamical Models Niklas Wahlström February 10, 2016 31

The Autoencoder

Notation:

• yk - High-dim. observations

• zk - Low-dim. features

...

...
...
... ...

yk,1

yk,2

yk,3

yk,n

zk,1

zk,m

ŷk,1

ŷk,2

ŷk,3

ŷk,n

Input layer
Hidden layer
�bottleneck� Output layer

︸ ︷︷ ︸
Encoder

︸ ︷︷ ︸
Decoder

Model components:

1. Encoder: zk = f e(yk;θE)

2. Decoder: ŷR
k = fd(zk;θD)

Reconstruction error:
VR(θE,θD) =

∑N
k=1 ‖yk− ŷR

k (θE,θD)‖2
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Deep Dynamical Model

Notation:

• yk - High-dim. observations

• zk - Low-dim. features

• uk - Inputs

uk−n+1 · · · uk

· · ·zk−n+1 zk ẑk+1|k

yk−n+1 · · · yk ŷk+1|k
High-dim.
observations

Features

Inputs

f

f ef e fd
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Deep Dynamical Models Niklas Wahlström February 10, 2016 32

Deep Dynamical Model

Notation:

• yk - High-dim. observations

• zk - Low-dim. features

• uk - Inputs

uk−n+1 · · · uk

· · ·zk−n+1 zk ẑk+1|k

yk−n+1 · · · yk ŷk+1|k
High-dim.
observations

Features

Inputs

f

f ef e fd

Model components:

1. Encoder: zk = f e(yk;θE)

2. Prediction model: ẑk+1|k = f(zk,uk, . . . , zk−n+1,uk−n+1;θP)

3. Decoder: ŷP
k+1|k = fd(ẑk+1|k;θD)

Prediction error:
VP(θE,θD,θP) =

∑N−1
k=n ‖yk+1− ŷP

k+1|k(θE,θD,θP)‖2
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Training

Key ingredient: The reconstruction error and the prediction error
are minimized simultaneously !

(
θ̂E, θ̂D, θ̂P

)
= arg min

θE,θD,θP

VR(θE,θD) + VP(θE,θD,θP)

VR(θE,θD) =

N∑

k=1

‖yk − ŷR
k (θE,θD)‖2,

VP(θE,θD,θP) =

N−1∑

k=n

‖yk+1 − ŷP
k+1|k(θE,θD,θP)‖2.
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Experiment: Pendulum

• Layers in
encoder/decoder: 4

• Latent dim.:
dim(z) = 1

• Order of prediction
model: n = 4
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Experiment: Pendulum
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Experiment: Agent in a Planar System
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Output• Input: O�set in x−dir.
(u1) and y−dir. (u2)

• Output: Pixel values of
a 51× 51 image

• Latent dim.: dim(z)=2



Deep Dynamical Models Niklas Wahlström February 10, 2016 35

Experiment: Agent in a Planar System

• Input: O�set in x−dir.
(u1) and y−dir. (u2)

• Output: Pixel values of
a 51× 51 image

• Latent dim.: dim(z)=2



Deep Dynamical Models Niklas Wahlström February 10, 2016 36

Experiment: Agent in a Planar System
Separate vs. Simultaneous Training

True frame

Simultaneous training

Separate training
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Experiment: Agent in a Planar System

Simultaneous Training
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Experiment: Agent in a Planar System

Simultaneous Training Separate Training
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Deep Dynamical Models for Control

The DDM is used to learn a closed-loop policy via nonlinear model
predictive control (MPC). Future control signals are optimized by
minimizing

u∗0, . . . , u
∗
K−1 ∈ arg min

u0:K−1

∑K−1

k=0
‖ẑk − zref‖2 + λ‖uk‖2,

where zref = f e(yref,θe is the feature of the reference image. When
the control sequence u∗0, . . . , u

∗
K−1 is determined, the �rst control u∗0

is applied to the system.
Hence, the MPC is only applied in the low-dimensional feature
space!
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Deep Dynamical Models for Control

Proposed algorithm

Follow a random control strategy
and record data
loop

Update DDM with all data
collected so far
for k = 0 to N − 1 do

- Get zk, ..., zk−n+1 via
encoder.
- u∗k ← ε-greedy MPC policy
using DDM prediction.
- Apply u∗k and record data.

end for

end loop

z
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z
2
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Green: Previous feature values
Cyan: Current feature
Red: Reference feature
Yellow: 15-step ahead prediction

N. Wahlström, T. B Schön, and M. P. Deisenroth
From Pixels to Torques: Policy Learning with Deep Dynamical Models. ArXiv e-prints 1502.02251
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Experiment: Control of a Pendulum from Pixels Only

• Ref. image: Pendulum pointing upwards
• 100 images in each trial
• After 15 trials, a good controller was learned
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Application: Control of Two-Link Arm from Pixels Only

Trial: 3 Frame: 94

J.-A. M. Assael, N. Wahlström, T. B. Schön, and M. P. Deisenroth. Data-E�cient Learning of
Feedback Policies from Image Pixels using Deep Dynamical Models. In Deep Reinforc. Learning WS
at the Conference on Neural Information Processing Systems (NIPS), Montréal, Canada, Dec. 2015.

• Ref. image: Arm pointing upwards

• 1000 images in each trial

• After 8-9 trials a fairly good
controller was learned.



Deep Dynamical Models Niklas Wahlström February 10, 2016 41

Application: Control of Two-Link Arm from Pixels Only

J.-A. M. Assael, N. Wahlström, T. B. Schön, and M. P. Deisenroth. Data-E�cient Learning of
Feedback Policies from Image Pixels using Deep Dynamical Models. In Deep Reinforc. Learning WS
at the Conference on Neural Information Processing Systems (NIPS), Montréal, Canada, Dec. 2015.

• Ref. image: Arm pointing upwards

• 1000 images in each trial

• After 8-9 trials a fairly good
controller was learned.



Deep Dynamical Models Niklas Wahlström February 10, 2016 42

Outline

1. Introduction via three recent applications

2. What is a neural network (NN)?

a) Concrete example for regression
b) Learning and regularization

3. What is a deep neural network?

4. Learning deep neural networks

a) Pre-training
b) De�ning and learning the autoencoder

5. Developing and learning a deep dynamical model

a) Problem formulation
b) Deep dynamical model

6. Some pointers, summary and the future
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Some pointers
Key publication channels in machine learning, NIPS and ICML
From NIPS in December ( nips.cc/Conferences/2015 ) three of the
six tutorials deals with deep learning:

1. G. Hinton, Y. Bengio and Y. LeCun, Deep learning
https://nips.cc/Conferences/2015/Schedule?event=4891

2. B. Dally, High-performance hardware for Machine Learning
nips.cc/Conferences/2015/Schedule?event=4894

3. J. Dean, Large-scale distributed systems for training NN
nips.cc/Conferences/2015/Schedule?event=4895

A well written and timely introduction:
LeCun, Y., Bengio, Y., and Hinton, G. Deep learning, Nature, Vol 521, 436�444.

You will also �nd more material than you can possibly want here

http://deeplearning.net/

nips.cc/Conferences/2015
https://nips.cc/Conferences/2015/Schedule?event=4891
nips.cc/Conferences/2015/Schedule?event=4894
nips.cc/Conferences/2015/Schedule?event=4895
http://deeplearning.net/
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Summary (I/II)

A neural network (NN) is a nonlinear function y = gθ(u)
from an input variable u to an output variable y

parameterized by θ.

We can think of an NN as a sequential/recursive construction of
several generalized linear regressions.

Deep learning refers to learning NNs with several hidden layers.
Allows for data-driven models that automatically learns rep. of data
(features) with multiple layers of abstraction.

The deep autoencoder makes use of a multi-layer �encoder� network
to transform high-dimensional data into a low-dimensional
code/feature and a similar �decoder� network is used to recover the
data from the code.
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Summary (II/II)

Deep dynamical model:

• Model for high-dimensional pixel data

• Simultaneous training is crucial

• Application: Control based on pixel data only
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The future

The best predictive performance is obtained from highly �exible
models (especially when large datasets are used). There are basically
two ways of achieving �exibility:

1. Using models with a large number of parameters compared to
the data set (e.g. deep NN).

2. Models using non-parametric components, e.g. Gaussian
processes.

Use the network also for �attention� and control. Use reinforcement
learning to decide where to look for new data (resulting in new
knowledge).

Deep reinforcement learning workshop at NIPS in december.
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