Linearly and nonlinearly constrained Gaussian processes

Niklas Wahlström, Uppsala University, Sweden

Joint work with
Carl Jidling, Philipp Pilar, Thomas Schön, (Uppsala University),
Adrian Wills, Johannes Hendriks, Alexander Gregg, Chris Wensrich (University of Newcastle, Australia),

WASP ML Cluster,
April 14, 2023

Motivation - Application 1: Magnetic mapping - Indoor localization

Goal: Model magnetic field with a Gaussian process and infer measurements of this field

Question: Can we use any Maxwell's equations to constrain this model?

Motivation - Application 2:

Strain field reconstruction

$$
y=\mathcal{L}_{\mathbf{x}} \boldsymbol{\epsilon}(\mathbf{x})+\varepsilon=\frac{1}{L} \int_{0}^{L} \hat{\mathbf{n}}^{\top} \boldsymbol{\epsilon}\left(\mathbf{x}^{0}+s \hat{\mathbf{n}}\right) \hat{\mathbf{n}} d s+\varepsilon
$$

Goal: Model $\epsilon(\mathrm{x})$ with a Gaussian process and infer the value of $\epsilon\left(\mathrm{x}_{*}\right)$
Question: Can we use any physical knowledge to constrain this model?

Outline

Aim: Introduce constrained Gaussian process regression and demonstrate it on a few examples.

1. GP basics

2. Linear constraints
3. Strain field reconstruction
4. Nonlinear constraints

GP basics

Distribution over functions

$$
\left[\begin{array}{c}
f\left(\mathbf{x}_{1}\right) \\
\vdots \\
f\left(\mathbf{x}_{N}\right)
\end{array}\right] \sim \mathcal{N}(\left[\begin{array}{c}
\mu\left(\mathbf{x}_{1}\right) \\
\vdots \\
\mu\left(\mathbf{x}_{N}\right)
\end{array}\right], \underbrace{\substack{k \\
k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) \\
\vdots \\
k\left(\mathbf{x}_{N}, \mathbf{x}_{1}\right) \\
\cdots \\
\cdots \\
\cdots \\
\text { Gram matrix }}}_{\text {K }} \begin{array}{c}
k\left(\mathbf{x}_{N}, \mathbf{x}_{N}\right)
\end{array}])
$$

Uniquely specified by mean and covariance function

$$
\begin{aligned}
\mu\left(\mathbf{x}_{i}\right) & =\mathbb{E}\left[f\left(\mathbf{x}_{i}\right)\right] \\
k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\operatorname{Cov}\left[f\left(\mathbf{x}_{i}\right), f\left(\mathbf{x}_{j}\right)\right]
\end{aligned}
$$

Formally

$$
f(\mathrm{x}) \sim \mathcal{G} \mathcal{P}\left(\mu(\mathrm{x}), k\left(\mathrm{x}, \mathrm{x}^{\prime}\right)\right)
$$

GP basics - prediction

Let

$$
\begin{aligned}
y_{i} & =f\left(\mathbf{x}_{i}\right)+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
\mathbf{y} & =\left[y_{1}, y_{2} \ldots, y_{N}\right]^{\top}
\end{aligned}
$$

Then

$$
\begin{aligned}
{\left[\begin{array}{c}
\mathbf{y} \\
f\left(\mathbf{x}_{*}\right)
\end{array}\right] } & \sim \mathcal{N}\left(\left[\begin{array}{l}
\mathbf{0} \\
0
\end{array}\right],\left[\begin{array}{cc}
K+\sigma^{2} \boldsymbol{l} & \mathbf{k} \\
\mathbf{k}^{\top} & k\left(\mathbf{x}_{*}, \mathbf{x}_{*}\right)
\end{array}\right]\right) \\
K_{i j} & =k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\
\mathbf{k}_{i} & =k\left(\mathbf{x}_{i}, \mathbf{x}_{*}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbb{E}\left[f\left(\mathbf{x}_{*}\right) \mid \mathbf{y}\right] & =\mathbf{k}^{\top}\left(K+\sigma^{2} l\right)^{-1} \mathbf{y} \\
\mathbb{V}\left[f\left(\mathbf{x}_{*}\right) \mid \mathbf{y}\right] & =k\left(\mathbf{x}_{*}, \mathbf{x}_{*}\right)-\mathbf{k}^{\top}\left(K+\sigma^{2} l\right)^{-1} \mathbf{k}
\end{aligned}
$$

GP basics - linear operator measurements

Linear operator measurements

$$
y=\mathcal{L}_{\mathrm{x}} f(\mathrm{x})+\varepsilon
$$

Then

$$
\begin{aligned}
& \mathbb{E}\left[f\left(\mathbf{x}_{*}\right) \mid \mathbf{y}\right]=\mathbf{q}^{\top}\left(Q+\sigma^{2} l\right)^{-1} \mathbf{y} \\
& \mathbb{V}\left[f\left(\mathbf{x}_{*}\right) \mid \mathbf{y}\right]=k\left(\mathbf{x}_{*}, \mathbf{x}_{*}\right)-\mathbf{q}^{\top}\left(Q+\sigma^{2} l\right)^{-1} \mathbf{q}
\end{aligned}
$$

where

$$
\begin{aligned}
Q_{i j} & =\mathcal{L}_{\mathbf{x}_{i}} \mathcal{L}_{\mathbf{x}_{j}} k\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right) \\
\mathbf{q}_{i} & =\mathcal{L}_{\mathbf{x}_{i}} k\left(\mathrm{x}_{i}, \mathrm{x}_{*}\right)
\end{aligned}
$$

Example:

$$
y_{i}=\int_{a_{i}}^{b_{i}} f(x) d x \Rightarrow\left\{\begin{array}{l}
Q_{i j}=\int_{a_{i}}^{b_{i}} \int_{a_{j}}^{b_{j}} k\left(x, x^{\prime}\right) d x^{\prime} d x \\
\mathbf{q}_{i}=\int_{a_{i}}^{b_{i}} k\left(x, x_{*}\right) d x
\end{array}\right.
$$

GP basics - linear operator measurements

GP basics - linear operator measurements

GP basics - linear operator measurements

Outline

1. GP basics
2. Linear constraints
3. Strain field reconstruction
4. Nonlinear constraints

Multivariate GP - constraint incorporation

Toy Example

Consider a Gaussian process

$$
\mathrm{f}(\mathrm{x}) \sim \mathcal{G} \mathcal{P}\left(\mu(\mathrm{x}), \mathbf{K}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)\right)
$$

with two-dimensional input and two-dimensional output

$$
\mathbf{f}(\mathbf{x})=\left[\begin{array}{l}
f_{1}(\mathbf{x}) \\
f_{2}(\mathbf{x})
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Assume that we know from the physics that the all samples from the GP prior should obey the constraint

$$
\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}=0 \Leftrightarrow \underbrace{\left[\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y}
\end{array}\right]}_{\mathscr{F}_{\boldsymbol{x}}} \mathbf{f}(\mathrm{x})=0
$$

How can we model the covariance function $\mathbf{K}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ such that this constraint is guaranteed to be obeyed?

Multivariate GP - constraint incorporation

Assume linear constraints

$$
\mathscr{F}_{\mathrm{x}} \mathrm{f}(\mathrm{x})=0
$$

Let $\mathrm{f}(\mathrm{x})=\mathscr{G}_{\mathrm{x}} \mathrm{g}(\mathrm{x})$, where $\mathrm{g}(\mathrm{x}) \sim \mathcal{G} \mathcal{P}\left(\boldsymbol{\mu}_{\mathrm{g}}(\mathrm{x}), \mathbf{K}_{\mathrm{g}}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)\right)$

$$
\mathrm{f}(\mathrm{x})=\mathscr{G}_{\mathrm{x}} \mathrm{~g}(\mathrm{x}) \sim \mathcal{G} \mathcal{P}\left(\mathscr{G}_{\mathrm{x}} \mu_{\mathrm{g}}(\mathrm{x}), \mathscr{G}_{\mathrm{x}} \mathrm{~K}_{\mathrm{g}}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathscr{\mathcal { E }}_{\mathrm{x}^{\prime}}^{\top}\right)
$$

Then

$$
\mathscr{F}_{\mathrm{x}} \mathscr{G}_{\mathrm{x}} \mathrm{~g}(\mathrm{x})=0
$$

Arbitrary $\mathrm{g}(\mathrm{x})$

$$
\Rightarrow \mathscr{F}_{\mathrm{x}} \mathscr{G}_{\mathrm{x}}=\mathbf{0}
$$

Find \mathscr{G}_{x}

Carl Jidling, Niklas Wahlstöm, Adrian Wills, Thomas B. Schön. Linearly constrained Gaussian processes. Advances in Neural Information Processing Systems (NIPS),Long Beach, CA, USA, December, 2017.

Multivariate GP - constraint incorporation

Toy Example (cont.)
We consider the function

$$
\mathbf{f}(\mathbf{x})=\left[\begin{array}{l}
f_{1}(\mathbf{x}) \\
f_{2}(\mathbf{x})
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

and the constraint

$$
\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}=0 \Leftrightarrow \underbrace{\left[\begin{array}{ll}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y}
\end{array}\right]}_{\mathscr{F _ { x }}} \mathrm{f}(\mathrm{x})=0
$$

Need \mathscr{G}_{x} such that $\mathscr{F}_{\mathrm{x}} \mathscr{E}_{\mathrm{x}}=\mathbf{0}$. One option is

$$
\boldsymbol{\mathcal { G }}_{\mathrm{x}}=\left[\begin{array}{c}
-\frac{\partial}{\partial y} \\
\frac{\partial}{\partial x}
\end{array}\right]
$$

since

$$
\mathscr{F}_{\mathbf{x}} \mathscr{G}_{\mathbf{x}}=\left[\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y}
\end{array}\right]\left[\begin{array}{c}
-\frac{\partial}{\partial y} \\
\frac{\partial}{\partial x}
\end{array}\right]=-\frac{\partial^{2}}{\partial x \partial y}+\frac{\partial^{2}}{\partial y \partial x}=0 .
$$

Simulation experiment - toy example

Choose $k_{\mathbf{g}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma_{f}^{2} e^{-\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}}{\left.2\right|^{2}}}$. Then we get

$$
\begin{aligned}
\mathbf{K}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =\mathscr{G}_{\mathbf{x}} \boldsymbol{\mathscr { G }}_{\mathbf{x}^{\prime}}^{\top} k_{\mathbf{g}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left[\begin{array}{c}
-\frac{\partial}{\partial y} \\
\frac{\partial}{\partial x}
\end{array}\right]\left[\begin{array}{ll}
-\frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{array}\right] k_{\mathbf{g}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \\
& =\sigma_{f}^{2} e^{-\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}}{2 /^{2}}}\left(\left(\frac{\mathbf{x}-\mathbf{x}^{\prime}}{l}\right)\left(\frac{\mathbf{x}-\mathbf{x}^{\prime}}{l}\right)^{\top}-\left(1-\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}}{l^{2}}\right) I_{2}\right)
\end{aligned}
$$

Below we have simulated a field which we know fulfills the constraint

Outline

1. GP basics

2. Linear constraints
3. Strain field reconstruction
4. Nonlinear constraints

Tomography intuition

			11	22				3	16
		4	4	13			4	4	16
5	9	4	\rightarrow	18	?	?	?	$\xrightarrow{7}$	19
2	7	12	\rightarrow	21	?	?	?	\rightarrow	10
11	1	4	,	16	?	?	?		25
1	\checkmark	\dagger		21	\downarrow	\downarrow			8
28	17	20	3	16	21	15	18	11	22

Strain field reconstruction

Deformed object

Reconstruct the strain tensor

$$
\boldsymbol{\epsilon}(\mathbf{x})=\left[\begin{array}{cc}
\epsilon_{x x}(\mathbf{x}) & \epsilon_{x y}(\mathbf{x}) \\
\epsilon_{x y}(\mathbf{x}) & \epsilon_{y y}(\mathbf{x})
\end{array}\right]
$$

Strain field reconstruction

$$
\begin{aligned}
& y=\frac{1}{L} \int_{0}^{L} \hat{\mathbf{n}}^{\top} \boldsymbol{\epsilon}\left(\mathbf{x}^{0}+s \hat{\mathbf{n}}\right) \hat{\mathbf{n}} d s+\varepsilon \\
& \hat{\mathbf{n}}=\left[\begin{array}{l}
n_{x} \\
n_{y}
\end{array}\right], \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

Strain field reconstruction

Vectorised form

$$
\begin{aligned}
& y=\frac{1}{L} \int_{0}^{L} \overrightarrow{\mathbf{n}}^{\top} \mathbf{f}\left(\mathbf{x}^{0}+s \hat{\mathbf{n}}\right) d s+\varepsilon=\mathcal{L}_{\mathbf{x}} \mathbf{f}\left(\mathbf{x}^{0}\right)+\varepsilon \\
& \mathbf{f}(\mathbf{x})=\left[\begin{array}{l}
f_{x x}(\mathbf{x}) \\
f_{x y}(\mathbf{x}) \\
f_{y y}(\mathbf{x})
\end{array}\right]=\left[\begin{array}{l}
\epsilon_{x x}(\mathbf{x}) \\
\epsilon_{x y}(\mathbf{x}) \\
\epsilon_{y y}(\mathbf{x})
\end{array}\right], \quad \overrightarrow{\mathbf{n}}=\left[\begin{array}{c}
n_{x}^{2} \\
2 n_{x} n_{y} \\
n_{y}^{2}
\end{array}\right]
\end{aligned}
$$

Strain field reconstruction - constraint incorporation

A physical strain field must satisfy the equilibrium constraints

$$
\begin{aligned}
& 0=\frac{\partial f_{x x}(\mathrm{x})}{\partial x}+(1-\nu) \frac{\partial f_{x y}(\mathrm{x})}{\partial y}+\nu \frac{\partial f_{y y}(\mathrm{x})}{\partial x} \\
& 0=\nu \frac{\partial f_{x x}(\mathrm{x})}{\partial y}+(1-\nu) \frac{\partial f_{x y}(\mathrm{x})}{\partial x}+\frac{\partial f_{y y}(\mathrm{x})}{\partial y}
\end{aligned}
$$

These can be written as

$$
\mathbf{0}=\underbrace{\left[\begin{array}{ccc}
\frac{\partial}{\partial x} & (1-\nu) \frac{\partial}{\partial y} & \nu \frac{\partial}{\partial x} \\
\nu \frac{\partial}{\partial y} & (1-\nu) \frac{\partial}{\partial x} & \frac{\partial}{\partial y}
\end{array}\right]}_{\mathscr{F}_{\mathbf{x}}} \mathbf{f}(\mathbf{x})
$$

Strain field reconstruction - constraint incorporation

We get

$$
\boldsymbol{G}_{\mathrm{x}}=\left[\begin{array}{c}
\frac{\partial^{2}}{\partial y^{2}}-\nu \frac{\partial^{2}}{\partial x^{2}} \\
-(1+\nu) \frac{\partial^{2}}{\partial x \partial y} \\
\frac{\partial^{2}}{\partial x^{2}}-\nu \frac{\partial^{2}}{\partial y^{2}}
\end{array}\right]
$$

Hence

$$
\mathrm{f}(\mathrm{x})=\mathscr{G}_{\mathrm{x}} g(\mathrm{x})
$$

Now let

$$
g(\mathrm{x}) \sim \mathcal{G P}\left(0, k_{g}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)\right)
$$

Then

$$
\mathrm{f}(\mathrm{x}) \sim \mathcal{G P}\left(0, \mathscr{G}_{\mathrm{x}} \mathscr{E}_{\mathrm{x}^{\prime}}^{\top} k_{\mathrm{g}}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)\right)
$$

Note

$$
y=\mathcal{L}_{\mathrm{x}}\left[\mathscr{G}_{\mathrm{x}} g(\mathrm{x})\right]+\varepsilon
$$

Strain field reconstruction - experimental results

Outline

1. GP basics
2. Linear constraints
3. Strain field reconstruction
4. Nonlinear constraints

Nonlinearly constrained Gaussian processes- idea

Question: What can we do if we have nonlinear constraints?
We focus on sum-constrained Gaussian processes

$$
\mathcal{F}[\mathbf{f}(\mathbf{x})]=\sum_{i} a_{i} h_{i}\left(f_{i}(\mathbf{x})\right)=C
$$

where $h_{i}(\cdot)$ is a non-linear function.
Idea: Reduce nonlinear constraints to linear

$$
\mathcal{F}\left[\mathbf{f}^{\prime}(\mathbf{x})\right]=\sum a_{i} f_{i}^{\prime}(\mathbf{x})=C, \quad f_{i}^{\prime}=h_{i}\left(f_{i}\right)
$$

1. Train constrained GP f^{\prime} on transformed data $y_{i}^{\prime}=h_{i}\left(y_{i}\right)$
2. Subsequently backtransform constrain GP $f_{i}=h_{i}^{-1}\left(f_{i}^{\prime}\right)$

Note: Note, since h_{i} is nonlinear we do not enjoy Gaussian property anymore. We use Laplace approximation to deal with this.

Nonlinearly constrained Gaussian processes- toy example

Toy Example (harmonic oscillator)
Motion modelled by multitask Gaussian process

$$
\mathbf{f}(t)=\left[\begin{array}{l}
f_{z}(t) \\
f_{v}(t)
\end{array}\right] \quad \begin{aligned}
& z: \text { displacement } \\
& v: \text { velocity }
\end{aligned}
$$

Constraint: energy conservation (friction neglected)

$$
E=E_{\text {pot }}(t)+E_{\text {kin }}(t)=\frac{k}{2} f_{z}(t)^{2}+\frac{m}{2} f_{v}(t)^{2}
$$

Sum constraint parameters

$$
\begin{aligned}
& \mathcal{F}[\mathbf{f}(\mathbf{x})]=\sum_{i} a_{i} h_{i}\left(f_{i}(\mathbf{x})\right)=C, \\
& a_{1}=k / 2, \quad h_{1}\left(f_{z}\right)=f_{z}^{2} \\
& a_{2}=m / 2, \quad h_{2}\left(f_{v}\right)=f_{v}^{2}, \quad C=E .
\end{aligned}
$$

Nonlinearly constrained Gaussian processes- auxiliary variables

Problem h_{i} has to be (piecewise) invertible
Solution Add auxiliary variables to make invertible
Ex Toy Example (harmonic oscillator) Auxiliary variables: z and v

1. Train constrained GP $f^{\prime}=\left[f_{z^{2}}^{\prime}, f_{v^{2}}^{\prime}, f_{z}^{\prime}, f_{v}^{\prime}\right]$ on transformed data $\mathbf{y}^{\prime}=\left[z^{2}, v^{2}, z, v\right]^{T}$
2. Subsequently backtransform constrained GP

$$
\begin{aligned}
& f_{z}=\operatorname{sign}\left(f_{z}^{\prime}\right) \sqrt{f_{z^{2}}^{\prime}} \\
& f_{v}=\operatorname{sign}\left(f_{v}^{\prime}\right) \sqrt{f_{v^{2}}^{\prime}}
\end{aligned}
$$

Nonlinearly constrained Gaussian processes - toy example

Left: Results for unconstrained GP
Middle: Results for transformed output learned by the constrained GP
Right: The back transformed output. The results for the unconstrained GP are used to recover the signs.

Nonlinearly constrained Gaussian processes
 - Double pendulum (real data)

REAL DATA EXAMPLE (DOUBLE PENDULUM)
We model both positions z_{x}, z_{y} and velocities v_{x}, v_{y} of the two masses, (i.e. 8 outputs), while at the same time respecting the law of energy conservation

$$
E=m_{b} g z_{b y}+m_{g} g z_{g y}+\frac{m_{b}}{2}\left(v_{b x}^{2}+v_{b y}^{2}\right)+\frac{m_{g}}{2}\left(v_{g x}^{2}+v_{g y}^{2}\right)
$$

Indices b and g refer to blue and green pendulum, respectively.

Nonlinearly constrained Gaussian processes
 - Double pendulum (real data) - Results

Left: Results for unconstrained GP Right: Results for constrained GP
\square Philipp Pilar, Carl Jidling, Thomas B. Schön, Niklas Wahlström. Incorporating sum constraints into multitask Gaussian

Conclusions and references

- Linear constraints can be incorporated in Gaussian processes
- Promising results on simulated and real data experiments
- The idea can also be extended to a nonlinear constraints

References

Carl Jidling, Niklas Wahlstöm, Adrian Wills, Thomas B. Schön. Linearly constrained Gaussian processes. Advances in Neural Information Processing Systems (NIPS),Long Beach, CA, USA, December, 2017.

Arno Solin, Manon Kok, Niklas Wahlström, Thomas B. Schön, and Simo Särkkä. Modeling and interpolation of the ambient magnetic field by Gaussian processes. IEEE Transactions on Robotics, 34(4):1112 - 1127, 2018

Carl Jidling, Johannes Hendriks, Niklas Wahlström, Alexander Gregg, Thomas B. Schön, Chris Wensrich, Adrian Wills. Probabilistic modelling and reconstruction of strain, Nuclear instruments and methods in physics research section B, 436:141-155, 2018.

Philipp Pilar, Carl Jidling, Thomas B. Schön, Niklas Wahlström. Incorporating sum constraints into multitask Gaussian processes, Transactions on Machine Learning Research, 2022.

Backup slides

Algorithm idea - toy example

Step 1: Assume that \mathscr{G}_{x} contains the same operators as \mathscr{F}_{x}

$$
\boldsymbol{E}_{\mathbf{x}}=\left[\begin{array}{ll}
\gamma_{11} & \gamma_{12} \\
\gamma_{21} & \gamma_{22}
\end{array}\right]\left[\begin{array}{l}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y}
\end{array}\right]
$$

Step 2: Expand

$$
\begin{aligned}
\mathscr{F}_{\mathbf{x}} \mathscr{G}_{\mathbf{x}} & =\left[\begin{array}{ll}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y}
\end{array}\right]\left[\begin{array}{ll}
\gamma_{11} & \gamma_{12} \\
\gamma_{21} & \gamma_{22}
\end{array}\right]\left[\begin{array}{c}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y}
\end{array}\right] \\
& =\gamma_{11} \frac{\partial^{2}}{\partial x^{2}}+\left(\gamma_{12}+\gamma_{21}\right) \frac{\partial^{2}}{\partial x \partial y}+\gamma_{22} \frac{\partial^{2}}{\partial y^{2}}
\end{aligned}
$$

Algorithm idea - toy example

Step 3: We need

$$
\left\{\begin{array}{l}
\gamma_{11}=0 \\
\gamma_{12}=-\gamma_{21} \\
\gamma_{22}=0
\end{array}\right.
$$

Step 4: Choosing $\gamma_{21}=1$, we get

$$
\boldsymbol{G}_{\mathbf{x}}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y}
\end{array}\right]=\left[\begin{array}{c}
-\frac{\partial}{\partial y} \\
\frac{\partial}{\partial x}
\end{array}\right]
$$

No solution? Retry with higher order operators!
Even more formal treatment based on polynomial rings and Gröbner basis theory is published in

Markus Lange-Hegermann. Algorithmic Linearly Constrained Gaussian Processes, Advances in Neural Information Processing Systems (NeurIPS), Montreal, 2018.

