
Static Typing Without Static Types —
Typing Inheritance from the Bottom Up

Benjamin Chung Paley Li Jan Vitek
Northeastern University

bchung@ccs.neu.edu {pa.li,j.vitek}@neu.edu

Abstract
Julia is an untyped imperative programming language designed for
scientific computing. Despite being untyped, Julia provides a rich
runtime type system that includes features such as inheritance, but
lacks the mechanisms to ensure compliance with interfaces. We
propose a static type system for a subset of Julia, called Jolt,
ruling out functional interface mismatches by synthesizing abstract
interfaces from concrete implementations. Jolt can rule out some
type errors in existing code without any new annotations, providing
additional safety for free.

1. Introduction
Traditional statically typed object-oriented languages have a series
of common idioms: single dispatch [7], figuring out which method
to use in which situation, interfaces [4, 11], to abstract over com-
mon means of access, and the means to statically ensure that those
interfaces are adhered to with the correct dispatch call.

These practices are perfectly suitable for many contexts, as is
demonstrated by the success of Java [7], C# [9], and C++ [13],
among others. These features are not universally applicable, how-
ever. Languages such as Javascript [6] and Lua [10] have no mecha-
nism to define enforced interfaces, but commonly use documentation-
defined interfaces to define behavior for classes of objects [10].

1 abstract A1
2 type C1 <: A1 end
3 type C2 <: A1 end
4 type C3 <: A1 end
5
6 function a(arg::C1) print("Hello ") end
7 function a(arg::C2) print("World\n") end
8 function problem(arg::A1)
9 return a(arg)

10 end
11
12 problem(C1()) # Hello
13 problem(C2()) # World
14 problem(C3()) # error

ERROR: MethodError: no method matching a(::C3)
Closest candidates are:
a(::C1)
a(::C2)

Figure 1. Object inheritance example in Julia.

Julia is another such programming language, as it provides
multi-method dispatch and an interface system that focuses on an
abstract struct-like construct. Julia was originally designed for the
purpose of scientific computation, in the vein of R or MATLAB[2],
containing a number of features designed specifically to support nu-
meric computation and other tasks common in scientific programs.

A

C1

a

C2

a
C3

Figure 2. Inheritance hierarchy diagram for Figure 1.

2. Julia
From the perspective of object-oriented language design, Julia has
several interesting features:

• Julia is dynamically typed, and has no mechanism for statically
checking type correctness. However, as illustrated in Figure 1,
Julia code does have many types.

• The purpose behind all of these types is dispatch. Julia provides
full multi-method dispatch based on runtime type tags. This lets
programmers write code that is highly specified for a specific
value.

• Despite having types with methods that operate over them, Julia
does not allow explicit procedural interfaces, a key feature of
traditional object systems. Julia’s interfaces are called abstract
types, and they define no explicit methods, instead, the abstract
types rely upon “a collection of informal interfaces” [1] to
abstract over implementations.

Figure 1 provides an illustration of how these features interact,
and how they can be used to do untyped object-oriented program-
ming. The diagram begins by constructing the object hierarchy
shown in Figure 2, as well as a function problem, which calls
the function a on an argument of type A.

The next step is to actually call the methods we have defined.
Julia performs dispatch by looking for the most specific method
whose arguments are satisfied by the given value - in essence,
providing a type guarantee that the argument will always be of the
declared type. In this way, the implementation of a on line 6 is
called when we call a with an instance of C1 on line 13, and the
implementation of a on line 7 is called when C2 is passed on line
13.

In this manner, and if we ignore C3 briefly, the programmer has
effectively built a functional interface. Any Awill have an amethod
associated with it, and we can use a on a Awith complete assurance
that it will actually exist. As a result, we have built an interface by
abstracting directly from the concrete implementations.

However, the assumption that a is always safe on an A is not
true in this actual program, once we add C3 back in. Julia does not

1 2016/9/1

t ::= C | s
s ::= A | any
d ::= abstract A <: s | type C <: s

|m(a :: t, ...) = e

e ::= x | new C() |m(e, ...)

Figure 3. Static syntax for Jolt.

impose any constraints on the types in a program, so C3 is perfectly
valid while lacking a. As a result, line 15 produced the listed error,
despite the argument to problem being type correct.

The error is easily spotted in this example, because all of the
type definitions are simple and locally defined. However, in real
Julia programs, types can be imported from other files and exist in
more complex hierarchies. Therefore, a functional interface could
be violated by a library, resulting in errors that are difficult to detect
ahead of time.

3. Jolt
An interesting observation about the issue identified in Figure 1 is
that it can be seen as a “message not understood” error, exactly the
kind that type systems are widely applied to detect and prevent.
However, untyped languages are uniquely difficult to type [5], as
complex inference is typically required and the idioms are difficult
to track with types.

Languages, such as Rust, with traits [12], and Haskell, with
typeclasses [8], have statically checked interfaces for multimeth-
ods, but cannot handle “orphan” implementations - a common id-
iom in Julia. As a consequence, we need to use a new approach.

Despite being untyped, Julia code uses a lot of type annotations,
though they are not used statically. We propose a type system called
Jolt for existing Julia code that can statically infer interfaces
and detect “method not found” errors, over a heavily pared down
version of Julia. Jolt does not introduce any new types to Julia,
instead using the type annotations, which already exist in Julia
code, for static typing. In the vein of optional typing [3], Jolt
statically type checks the program without adding any new syntax
or semantics, while detecting dynamic errors statically.

Jolt formalizes a minimal subset of Julia. In Figure 3, we
present the entire syntax for Jolt, which consists of all types (t),
heritable types (s), declarations (d), and expressions (e). Types in
Jolt are either a name, which can be the name of an abstract type
(A) or a concrete type (C), or the any keyword, which denotes
the top type. The declarations of Jolt declare abstract types,
concrete types, and methods. The three expressions in Jolt are
local variables, object creation, and method invocation.

Due to the concise nature of this formalism, the expression
typing and operational semantics rules for Jolthave been omitted,
as they are straightforward and does not offer much insight into the
inheritance structure of Julia. Instead, we will focus our attention
on highlighting how Jolt generates and ensures correctness of the
inheritance hierarchy created from its abstract and concrete types.

In Figure 4, we present our rules for when methods are enclosed
and/or inside a type. The symbol ∈ denotes the standard set notion
for an element being inside a set. In Jolt, this means the method
is syntactically defined for the type it is in. The symbol b denotes
a method being enclosed inside a type. In Jolt, a method is
enclosed in a type if that method exists in the inheritance hierarchy,
but there might not necessarily exist an actual implementation
of that method in the enclosing type. It is important to note the

TABSSELF

m(..., a :: A, ...) ∈ JAK
m(..., a :: A, ...) b A

TCONSELF

m(..., a :: C, ...) ∈ JCK
m(..., a :: C, ...) b C

TABSVIRTUAL

∀C <: A : m(..., a :: C, ...) ∈ JCK
∀A′ <: A : m(..., a :: A′, ...) b A′

m(..., a :: A, ...) b A

Figure 4. Method enclosure over types.

difference between b denoting the semantical relation of methods
inside a type that represents its place on the inheritance structure,
while ∈ denoting when a method is syntactically defined for a type.

The TAbsSelf rule describes when an enclosing method is de-
fined inside that type. For concrete types, their enclosing methods
are always defined inside themselves, as reflected by the TConSelf
rule. The TAbsVirtual rule describes the case when an enclosing
method in an abstract type is not inside that abstract type, which
means its types must have this method inside them and that all
abstract types below this abstract must have this method enclosed
within them.

An abstract type is considered correct when three separate
components are shown. The first component requires the name
of the type to be well-formed, the second component requires ev-
ery method in the type to be well-formed, and the final component
requires every method in the type to be enclosed within that type.
Three similar components are required to show a concrete type is
correct.

The key to the implementation of this static type system is
computing the enclosure relation to satisfy the requirements laid
out in Figure 4. We propose the straightforward approach, where
methods enclosed in an abstract type A are computed by taking the
intersection of all abstract subtypes A′ and concrete subtypes C,
and combined with the methods that are defined for A itself.

This bottom-up approach to producing interfaces is the dual of
the typical mechanism for ensuring that classes actually implement
their declared interface. In a more traditional setting, we go from
top-to-bottom, checking that the children implement a strict super-
set of the methods on the parent, while our approach ensures that
the parent has a subset of the methods on the children.

4. Conclusion
Julia provides an interesting alternative to traditional functional in-
terface definition, whereby the methods of an interface are solely
defined by the concrete implementations of that interface, instead
of having the interface specifying the methods of its concrete im-
plementation. Despite being untyped, we are able to utilize this
property to create and reason statically about an inheritance hier-
archy within Julia. We demonstrate this approach in Jolt , a min-
imal subset of Julia. Jolt provides static type checking for safe
calls of multi-method.

Our approach towards Jolt originated from the typed runtime
of Julia, which has the potential to provide the basis for other static
analyses. Future work could include extending the type system to
encompass the rest of Julia, as well as handling dynamic behavior
such as reflection and dynamic loading.

References
[1] Julia - interfaces. http://docs.julialang.org/en/release-0.4/manual/interfaces/.

[2] Jeffrey Werner Bezanson. Abstraction in technical computing. PhD
thesis, Massachusetts Institute of Technology, 2015.

2 2016/9/1

[3] Gilad Bracha. Pluggable type systems. In Workshop on Revival of
Dynamic Languages, 2004.

[4] P. S. Canning, W. R. Cook, W. L. Hill, and W. G. Olthoff. Interfaces
for strongly-typed object-oriented programming. In Conference Pro-
ceedings on Object-oriented Programming Systems, Languages and
Applications, OOPSLA ’89, pages 457–467, New York, NY, USA,
1989. ACM.

[5] Brett Cannon. Localized type inference of atomic types in python.
PhD thesis, California Polytechnic State University San Luis Obispo,
2005.

[6] ECMA Ecma. 262: Ecmascript language specification. ECMA (Euro-
pean Association for Standardizing Information and Communication
Systems), 1999.

[7] James Gosling. The Java language specification. Addison-Wesley
Professional, 2000.

[8] Cordelia Hall, Kevin Hammond, Simon Peyton Jones, and Philip
Wadler. Type classes in haskell. In European Symposium On Pro-
gramming, pages 241–256. Springer, 1994.

[9] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. C# language
specification. Addison-Wesley Longman Publishing Co., Inc., 2003.

[10] Roberto Ierusalimschy, Luiz Henrique De Figueiredo, and Waldemar
Celes Filho. Lua-an extensible extension language. Softw., Pract.
Exper., 26(6):635–652, 1996.

[11] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Feather-
weight java: A minimal core calculus for java and gj. ACM Trans.
Program. Lang. Syst., 23(3):396–450, May 2001.

[12] Eric Reed. Patina: A formalization of the rust programming language.
University of Washington, Department of Computer Science and En-
gineering, Tech. Rep. UW-CSE-15-03-02, 2015.

[13] Bjarne Stroustrup. The C++ Programming Language. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 3rd edi-
tion, 2000.

3 2016/9/1

	Introduction
	Julia
	Jolt
	Conclusion

